MIDTERM EXAM

Physics 204A- Mathematical Physics
[1.] A and B are two matrices. What is the difference between $e^{i t(A+B)}$ and $e^{i t A} e^{i t B}$ if t is small?
[2.] (a) What are the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{llll}
5 & 1 & 0 & 1 \\
1 & 5 & 1 & 0 \\
0 & 1 & 5 & 1 \\
1 & 0 & 1 & 5
\end{array}\right) ?
$$

You may use results we derived in class, or calculate directly.
(b) Suppose you apply the matrix A many times to the vector $\vec{v}=(.365 \quad .104 \quad .578 \quad .722)$. In what direction will the resulting vector point? If you wanted the result to point in that direction to some desired degree of accuracy, what property of A would determine how big 'many' should be?
[3.] A string is clamped at both ends $x=0$ and $x=L$. Assuming small amplitude vibrations, the amplitude $y(x, t)$ satisfies the wave equation,

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Here v is the wave velocity. The string is set in motion by grabbing it in the middle (at $x=L / 2)$ and displacing it so that it is in the shape of a triangle:

$$
\begin{array}{ll}
y(x, 0)=2 a x / L & 0<x<L / 2 \\
y(x, 0)=2 a(1-x / L) & L / 2<x<L .
\end{array}
$$

The initial velocity is zero:

$$
\frac{\partial y(x, t)}{\partial t}=0
$$

Compute the subsequent displacement, $y(x, t)$.

