Mass-Spring System

\[m \frac{d^2x}{dt^2} = -kx - \gamma \frac{dx}{dt} + f(t) \]

\[L \frac{d^2q}{dt^2} = -\frac{q}{c} - R \frac{dq}{dt} + v(t) \]

\[L \frac{di}{dt} = \left(-\frac{V}{R} \right) \]
Mass-Spring System

\[m \frac{d^2 x}{dt^2} = -kx - \gamma \frac{dx}{dt} + f(t) \]

\[m \frac{d^2 x}{dt^2} + \gamma \frac{dx}{dt} + kx = f(t) \]

Suppose \(f(t) = A \cos \omega t \) (or \(A \sin \omega t \))

Also denote \(k = mw^2 \).

Guess solution \(x = B \cos(\omega t - \delta) \)

\[-m\omega^2 \cos(\omega t - \delta) + mw^2 B \cos(\omega t - \delta) \]

\[-\gamma B \omega \sin(\omega t - \delta) = A \cos \omega t \]

\[\cos \omega t \left[B \frac{m(w^2 - \omega^2)}{\cos \delta} + \gamma B \omega \sin \delta \right] \]

\[+ \sin \omega t \left[B \frac{m(w^2 - \omega^2)}{\sin \delta} - \gamma B \omega \cos \delta \right] = A \cos \omega t \]

\[\tan \delta = \frac{\omega}{m(w^2 - \omega^2)} \]

\[B = A \left[m(w^2 - \omega^2) \cos \delta + \gamma \omega \sin \delta \right]^{-1} \]

\[= A \left[\frac{m^2 (w^2 - \omega^2)^2 + \gamma^2 \omega^2}{\sqrt{m^2 (w^2 - \omega^2)^2 + \gamma^2 \omega^2}} \right]^{-1} \]

\[= A \left[\frac{m(w^2 - \omega^2)^2 + \gamma^2 \omega^2}{\sqrt{m^2 (w^2 - \omega^2)^2 + \gamma^2 \omega^2}} \right]^{-1/2} \]
It's important to note at this point that the differential equation we are trying to solve is linear.

So if \(x_1 \) is a solution to \(f_1 \),
\[\hat{f} \]
\(x_2 \) is a solution to \(f_2 \),
\[\hat{f} \]
\(x_1 + x_2 \) is a solution to \(f_1 + f_2 \).

5. We know the solution for a constant period of \(T \) of the general \(f(t) \) function is
\[f(t) = \sum \frac{a_n \cos \frac{\omega_n t}{T}}{n} \]
\[w_n \equiv \frac{2\pi n}{T} \]

\[x(t) = \sum \frac{a_n \cos (w_n t - \delta_n)}{\left(m^2 (w_0^2 - w_n^2)^2 + \gamma^2 w_n^2 \right)^{1/2}} \]

\[\delta_n = \tan^{-1} \left(\frac{\gamma w_n}{m (w_0^2 - w_n^2)} \right) \]

Is this really correct? Where does initial condition come in? Add solution of
\[m \frac{d^2 x}{dt^2} + \gamma \frac{dx}{dt} + k x = 0 \]

(Regard these as response to \(f = 0 \))
\[x(t) = B \cos(\omega t - \delta) \]

because we will conclude \(B = 0 \) by similar algebra as before.

(Recall \(B \) is amplitude of driving force)

What can we do? \(x(t) = B e^{-\alpha t} \cos(\omega t - \delta) \)

Do we expect \(\omega = \omega_0 \)? \(\omega = \omega_1 \) \(\omega < \omega_0 \) \(\omega > \omega_0 \)?

A little bit of algebra... (MS-3A)

\[x = \frac{y}{2m} \]

\[\omega^2 = \omega_0^2 - \frac{y^2}{4m^2} \]

\[x(t) = B e^{-\frac{y}{2m} t} \cos \left(\sqrt{\omega_0^2 - \frac{y^2}{4m^2}} \ t - \delta \right) \]

\(B, \delta \rightarrow x(0), y(0) \)

What happens as \(t \rightarrow 00 \)?
\[x = -\alpha e^{-\alpha t} \cos(\omega t - \delta) - \omega e^{-\alpha t} \sin(\omega t - \delta) \]

\[x = \alpha^2 e^{-\alpha t} \cos(\omega t - \delta) + \omega \omega e^{-\alpha t} \sin(\omega t - \delta) \]

\[-\omega^2 e^{-\alpha t} \cos(\omega t - \delta) \]

\[e^{-\alpha t} \text{ cancels everywhere} \]

\[\cos(\omega t - \delta) \left[m\alpha^2 - m\omega^2 - 3\alpha + m\omega_0^2 \right] + \sin(\omega t - \delta) \left[2m\omega \alpha - \delta \omega \right] = 0 \]

\[\alpha = \frac{\omega}{2m} \]

\[\omega^2 = \omega_0^2 + \alpha^2 - \frac{\gamma}{m} \alpha \]

\[= \omega_0^2 - \frac{\gamma}{2m} \]

\[\omega < \omega_0 \]
Summary:

Original problem \[\rightarrow \text{HARD} \rightarrow \text{solution of original problem} \]

Problem in transform space \[\rightarrow \text{EASY} \rightarrow \text{solution in transform space} \]

Fourier, Laplace, ...
Resonance +
Most of response function:

\[
\left(m^2 (w_0^2 - w_n^2) + y^2 w_n^2 \right)^{1/2}
\]

\[
w_n = \frac{2\pi n}{T}
\]

\(\text{Note: unique and thus has maximum when } w_n = w_0\)

\[
d/w_n \Rightarrow \left[m^2 (w_0^2 - w_n^2)^2 + y^2 w_n^2 \right]^{3/2} \left(-1/2 \right)
\]

\[
\left[2 m^2 (w_0^2 - w_n^2) (-2w_n) + 2 y^2 w_n \right]
\]

\[
f'(w_n) = \frac{2 m^2 w_n (w_0^2 - w_n^2) - y^2 w_n}{\left[m^2 (w_0^2 - w_n^2)^2 + y^2 w_n^2 \right]^{3/2}} = 0\]

\[
\text{Maxima p126-7:}
\]

\[
121 = \left[R^2 + (4t - 4c)^2 \right]^{1/2}
\]

\[
x^2 + y^2 = \text{max}w^2x = 0
\]

\[
L^2 + R^2 + 2c Q = 0
\]

\[
121 = \left(w_m - w_m w_0^2 \right)^2
\]

\[
= \sqrt{w_0^2 + m^2 (w_0^2 - w_n^2)^2}
\]

\[
= \frac{1}{w_n^2} \left[y^2 w_n^2 + m^2 (w_0^2 - w_n^2)^2 \right]
\]

Resonance condition is not \(w_n = w_0 \)

But \(w_0 \) because natural frequency is not \(w_0 \)

w_0 is incorrect!
Question in class:

If Amplitude remains small, where does Energy go?

We gave correct qualitative answer: When \(f(t) \) and \(x(t) \) not in phase, Mass often does work on object except \(f \), Net work done is small.

More quantitative:

\[
\text{Power} = \frac{1}{T} \int_{0}^{T} f(t) \overline{x(t)} \, dt
\]

\[
= \frac{1}{T} A B \omega_n \int_{0}^{T} \cos(t) \sin(\omega_n t) - \cos(t) \sin(\omega_n t) \, dt
\]

\[
= \frac{1}{2} A B \omega_n \frac{T}{2} \sin\delta
\]

\[
= \frac{1}{2} \frac{A^2}{m} \sin^2 \delta
\]

But \(B = \frac{A}{\sqrt{m^2 (\omega_n^2 - \omega^2) + \gamma^2 \omega_n^2}} \)

\[
\sin \delta = \frac{\omega_n}{\sqrt{\omega_n^2 + \gamma^2 (\omega_n^2 - \omega^2)^2}}
\]

\[
\cos \delta = \frac{\gamma \omega_n}{\sqrt{\omega_n^2 + \gamma^2 (\omega_n^2 - \omega^2)^2}}
\]

\[
\sin \delta = \frac{\omega_n}{\sqrt{\omega_n^2 + \gamma^2 (\omega_n^2 - \omega^2)^2}}
\]

1. \(\omega_n = \gamma \):

\[\gamma = \alpha \quad \text{no work done,} \]

\[
\text{Power} = \frac{1}{2\alpha} A^2 \sin^2 \delta
\]
\[w = w_0 \quad \sin \delta = 1 \]

Resonance of power and amplitude of which are not the same, DO and not same as frequency.

- Resonance of power: \[w = w_0 \]
- Resonance of amplitude: \[w^2 = (w_0^2 - \frac{\delta^2}{2m^2})^{1/2} \]
- Natural frequency: \[w^2 = (w_0^2 - \frac{\delta^2}{4m^2})^{1/2} \]

\[w = w_0 \quad \frac{1}{\sqrt{1 + \frac{m^2}{\gamma^2}(\frac{\delta}{w_0})^2}} \quad m/\gamma = 100 \]