FINAL EXAM

Physics 204A- Mathematical Physics

[1.] Solve for $y(t)$ and $z(t)$ by Laplace transforming the equations.

$$
\frac{d y}{d t}-y-10 z=0 \quad \frac{d z}{d t}+y+z=0
$$

The initial conditions are $y(0)=0$ and $z(0)=2$.
[2.] Three equal masses m are connected by springs of spring constant k and $2 k$ as shown in the figure. Write down the equations of motion. Assume a solution $x_{l}(t)=a_{l} e^{i \omega t}$ and convert the system of three differential equations into a set of three algebraic equations. What are the values of the normal mode frequencies ω ? Give one of the eigenmodes. What is its interpretation?
[3.] (a) From the definition, derive the Laplace transform of $f(x)=x^{2}$.
(b) Find the inverse Laplace transform of $\frac{s}{(s+a)(s+b)}$ for $a \neq b$.
[4.] Compute the Fourier transform of the function which has period 2 and takes the values $f(x)=x$ for $-1<x<1$. Compute the Fourier transform of the function which takes the values $g(x)=x$ for $-1<x<1$, and is zero everywhere else. (See pictures.)
[5.] Compute the integral of $f(z)=x+2 y i$ on a circle of radius a about the origin $z=0$. This function looks pretty well behaved in the sense that the real and imaginary parts are nice smooth polynomials. Shouldn't that mean the integral around a closed loop vanishes?
[6.] The functions $u(x, y)$ and $v(x, y)$ are the real and imaginary parts, respectively, of an analytic function $w(z)$.
(a) Assuming the required derivatives exist, show that $\nabla^{2} u=\nabla^{2} v=0$.
(b) Show that the two curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ intersect at right angles.

