PHYSICS 200C, SPRING 2017
ELECTRICITY AND MAGNETISM
Assignment Two, Due Friday, April 21, 5:00 pm.
Problem numeration is from “Classical Electrodynamics”, J.D. Jackson, third edition.
[1.] Jackson 6.3.
[2.] Jackson 6.4.
[3.] Jackson 6.8.

[4.] Show that if magnetic monopoles did exist, but all particles in nature had the same
ratio of magnetic to electric charge, then one could redefine the sources and fields of electro-
magnetism so that the usual Maxwell equations (in which there are no magnetic monopoles)
would emerge.
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6.1 The homomeneans dilfusion cquation (5.160) for the vector polential for quasi-shali
felds i nnbonnded coidineline medi bos a solution to the ntin value problem o

the forin
Alg, 1) = / PrGE - & HAF,0)

where )f("" G describes the initial field configuration and G is an appropriate kernel.

a) Solve the initial \m.lue pmbimn by use of » three-dimensional Fourier transform

in space for A(' R the usual nssnption ob intrchiange of orders of inte-
gration, show £l tlu Creen fanetion hos e Fonsder representation
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and it is assumed that ¢ > 0.

We define the Fourier transform by

A(F 1) = /A(k He FE P
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[ this case. the diffusion equation V24 = podA /8t becomes
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This equation is first order in titne, and is easily solved to yield
|
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Noto that we have written the solution in terras of initial conditions specified as
V(1. 0) at time ¢ = (1. This i essenlinlly the answer in momentum space. All we

have to do is to dnvert the transforin. The fnverse transforin gives
A{f 1) = (q )’ /E(E‘ 0)e” kzt,/uveik',:? BL

where
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The result is
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frong (1) that the solntion o momen-

Alrematively, we conld have noted direct
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pm space s g product of ¢ R il ALk, 03 Asaresulf, the vrdinary spuce

solation 1= a convohtlion ax tudicat .

By iutraducing o Fonrier decomposition in buih spiee e time, and pesTorning
the froqueney iniearal in the complex o plane to recover thie reanlt of part a). show
it G5 = B0 s the diffusion Groen funetion that sitisfics the mlionogeieonus
eouation
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and vanishes lor £« 0,
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thie above nlomogeneous equation hecones
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This inay be performerd by contewr tegration. For £ (0 Jordau’s levnma tells
ks elose the eoutour in the lower-lialf plase. As 2 result. we picl ap the residue
ab w = —ik? Jpo. The resalh s




On the other hand, for { < U, we close Lhe contour in the upper-half plane and end
up with G = 0 ag there are no encloged poles. Finally, writing ont the momentum
space Fourier transform gives
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Show that if ¢ is uniform throughout all space, the Green function is
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Actaally, we must take both g and o o be uniform in all space. In this case, the
wmomenturn integration in (2) may be performed by completing the square
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Suppose that at time /== 0, the initial vector potential A(F",0) is nonvamishing
only in a localized region of finear extent d atound the origin. The G depen-

dence of the felds is observed at a point P far from the origin, ie., i = r » d.
Show that thare are three regimes of thme, 0 < ¢ < Ty, Ty <t < Ty, and ¢ 3 T,
Give plausible defiuitions of Ty and T>, and (lescrihe qualitatively the time depen-
deirce at P, Show that iu the Jast regime, the vector potential is proportional to
the volume integral of ff{j’ f,0) times =3/, agsuming that integral exists. Relate
your discussion to those of Section 5.18.8 and Problems 5.35 and §.36.

For a local ‘disturbance’ near the origin, physical intnition tells us that it will
take sonie time before the observer ak point P will manage to observe it. For
a diffusion problem, this timae i3 essentfally the timescale for diffusion, set by
the diffuﬂiun cocfficient D = 1/pe, where the diffugion equation is of the form
Bpjot = V- (DVp). To be specific, the field at point P is given by the convolution

AE,t) = /G(i"- &, 0)A(F",0) d s
= 1) #"’ /4( l]}e—#wéi—a‘:’!“/dt &

Assuming (#[ = » » d, we may approximate the integral by simply taking
& — F'12 = d?. This gives
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where {xf; is the spatial avernge of A in the nonvanishing region. Defining 7 =
por? 14 and 7y = pad Az, the hehwvior of the veetor potential is then
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A shiort times, ¢ < . thie exponentinl is highly suppressed, and there is po signal
at poist P Aber time 7y, howener, the '-."||-l|1‘I'p!i:|1 beeomes of order Q(1), The

intiind veolor ['c;?,i-g_!l'i.-! has now dilfused te 2 However, becguse of the 2__‘___};-“;; &

prefuctor, tie signal dies away at long times. For a rongh estimate, we Like
Ty =m == [10'7‘2/4 Ty = 27

Then for £ < T the vector potential at point P is essentially zero. Between T
and T4, the vector potential is non-gero, ancd ai long times aftor To, everythivg
has diffused awny. Fiunlly. poting that the volume integral of A(#1,0) is simply
JUAY, the expression in (4) detonstrates that ot late times (when the expoucn
tinl is essentinlly unityd the veator potential is indord proportional to this volume
integral times $7372,

@ j \ 6 iI.\ uniformly magnetized and conducting sphere of radius R and total magnetic mo-
Pe k’W ment m = 473 B3/3 rotates about its magnetication axis with angular speed w, In
the steady state no current fows in the conductor. The motion is nonrelativistic; the

L ' 7 sphere has no excess charge on it.

a) By considering Ohm’s law in the moving conductor, shiow that the wotion induee

an electric Geld and & unilorn volume charge density in the conducior, p =
/et B2,
We assine the sphere is wnznetized and spinning along the £ axis. Shire tu
magnel ic momwent is 7 s A1 where Vo= Sr /i is the volume of the sphore,
we soe that the nasnetization is sinply A = M2, As demonstrated earlier, a
amilormly imagnetized gphere has a inilorn mngnetic induction f} %;Amﬁ in its
futerior. In terms of me. this is
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We now observe that the elecirie field Ef’_in the rotating frame of the sphere
may he reluted o bl quantitios by E' = /047 x B. Oban's Taw in the retating

relermmee Trome is then J = o = {7 + " x B). Since no curreni Rows in the
steady state {J = 0}, this motion must induce an electric field £ = —&x B. Using
& ez wg and ¥ w X F, we obbain
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The vector structure s essentially a projection of 7 into the horizoutal plane
perpendicutar to the £ axis. In cylindrical coordinates, this indicates that

- formwp
E, = i (5§
4 2
Ii is then a simple matter of applying Ganss” law to recover the volume churge
desity. However. before we da 5o, wo note that this is o exlindrically syinmetric
eleetrie field (pointed horizontally fnward townrds the < axis). Tt may gt first lver
sotwwhat surprising that o sphere will give neylindrical electyie fieldl. However,
votation about an axis is actually o eylindrical process, So from this poing of

view, the electric field is quite natural.
Using p == &% - F we obtain a uniform volume charge density
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It is importasit to note thiat, while the churge density is uniform inside the sphere,
the electric field is notradial. The discrepansy between a uniforn spherical charge
distribution and the cylindrical clectric fiekl must then arise due to a surface
charge. This then provides a hint as to how to approach the remainder of this
problem,

Beeanse the sphere is electrieally noniral, there i no monopole slectrie field ont-
sidde. Use symaiotey araunonts to show that the lowest possible electric imultipo-
Lurity is quadrapole. Show that only a quadenpole finld exists outside and Ilml ”ll‘
quadrpole moment tensor has onvanishing eomponents, Quy = A ? [ 3e?,
Qo = Qop = ~Q33/2

No charge resides outside the sphere. As a result, the exterior field may be
described through the multipole expausion. As indicated, charge neutrality guar-
antees the vanishing of the monopole (! = 03 moment. Furthermore, the add
moments vanish due o symunetry of the electric field (5} under the parity trans-
formation z -+ —z. (Tlsat is of course the interval field; however we may see that
the external field must necessarily respect the symmetry of the internal one.)
Thus a simiple symmetry argument demonsirates that the lowest possible nuulti-
pole is the quadrupole (¢ = 2). Symumetry along will ot preclude higher oven
moments. Howover an explicit caleniation will,

Without knowing the surface charge. we cannot directly culeulate the electric
multipoles. Eowever, we note that the interior electric field (5} cau be integrated
o obtain the interior electrostatic potential

pomw®

(#) / dt / pddp == o + =

Converted back to spherical courdinates, this gives
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where we have converted sin® @ inte Legendre polynomials. This can be written
explicitly as a Legendre expansion
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s0 that in particular the potential ab the surface of the sphere is

H(R,0) = (;]5 b3 u&m%
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We iy now sedve for the exterior potentinl by treating this as an electrostatic
houndary vilue peoblem. We reeall that, given a sphere with azimutlinlly sy
wnetric potential V(0) = S, arF{cosd) on the surface. the exterior solution lins
thie formi Wfr, 0) = 3 o By Pyfeos 8). Purthermore. chirge nenttrality in the

L&

presont ease forees the menopole (& = 0) term to vanish, Hener we find that
g = - pymiee /6m R, and that the external potential is

L pomwdt® )
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Incidentally, we could write an expression valid both in the interior and the
exterion as

d(r,0) = LU 2o O(R - 1) Po(cosd) — R p (608 0) )
Pir, e llﬁR RZ R E I pieos l‘i 20008 1)
Noto thiat this potentinl s only harmonie onfslde the sphere; inside the sphivre
phe 22/ R torm mnltiplying Phleos 0) s not of the vight (A BB (cos )
fort to be harmonie. Towever, this is present precisely beennse of the wniform

volume charge density, which acts as a { = 0 source.
In any case, we are esseatially done, ag the exterior potential {6} clearly has only
a quadrupole term
o [T o Yo 0(6,0)
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Comparing this with the muliipole expansion

o I Yiwl(0.9)
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Couverting to cartesian tensors yields

fin dorew 2
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By considering the vadiol dleckrie fields inside and eutsile the sphiere, show thai

the necossary surlace-chrage density o(8) is

1 dmw 1
drR? 82 |
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The surface charge may be computed by fiest obiaining the jump fu the nornmi
camponent of the electric fickl at the surface of the sphere. Workiug i sphoerical
components, asd taking the gradiest of the potential (7). we find
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The surface charge 3s then compiiled ag
g
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The rotating sphore seves ag a unipolar induction device il stationary cirenit:
i albachied by a slip ring o the pole and acsliding contaet $o the equalor. Show
that the e intearal of the electaie leld from the cquator eontact to the pole
contact by auy paih) is & e pppee/da R,

Althongh the sphere is ratating., both the electric and the mugnetic fickd sre static.
Henee the lne fntegral of the electric Tield gives shuply the eleetrostatic potential,

I this case
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Additional stuff for my record
The potential due to the surface charge
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The total potential outside the sphere (r« = a and r5, =r):
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8() = 2p(7) + 2(7) = dreg T cor 2 6mc2eg TP 6m 73

The electric field outside the sphere:

o mwR?
4

E(r) = -ve() =
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Problem 6.8
In an external uniform electric field #, the sphere is uniformly polarized with the polarization given by Eq. (4.57):
€E—€ =

P =3 7
606—!—260

0
Therefore, the bound volume and surface charge densities are:
pbz—V-ﬁ=0, ab:ﬁ-ﬁ

where 72 is the normal vector on the sphere surface. Since the sphere is rotating, the bound surface charge results an
effective surface current with density:

Ky =0y = (P )@ X 7)|r=a = a(P - 7T)(w x )



Comparing with the effective surface current density Ky = M x 7 due to magnetization M , we identify (1(13 -11)& as
an effective magnetization. Therefore, the effective magnetic surface charge density

o (0,9) = Mot - i = a(P- 7)(@ - ) = Beoa—
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The magnetic scalar potential ®p(7) (Eq. (5.100)):
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Using the identity:
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and expanding 1/|7 — r/| using spherical harmonics, the integral becomes:
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where 7« = min(r,a) and rs = max(r,a). Therefore, the scalar potential

1 OM_ 1 _ 3 ¢ i dm r2
Oy (F) = EY{ ~|r_—!_.’|d 47r L .:'! o wBy FE sin @ cos 0 cos ¢
= £¢o :+ 2(:; why t::g (rsin @ cos ¢)(rcos )

Note

2 = 25 ="2.5
rrd T 2
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The magnetic field H can be determined from ® m(7):
€—¢ a)’® 1 a)’®
—€ .
r——e wlyd— 3 rxz2=-Pwq— 7 22
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What if the electric field is along the rotational axis?
The effective magnetic surface charge density:

or(0,¢) = a(B - 7)(@ - i) = eo—— qw g cos? 0
¢ + 2ep
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Problem 6.11

‘.‘ ,‘.¢> (a) The momentum conservation equation
e
<

d, = = =
E(Pﬁelds i Pmech.) . fzqwijnjda = — %(—'F) - nida
j .

implies that the projection of the momentum flow along the direction of 7i is given by —T. i where T is the Maxwell
stress (momentum) tensor:

, L . 1,
Jbzm&@—gﬁ%yummm~§W%)

Physically —7;; is the rate at which the itP-component of the momentum is crossing a unit area in the j** —direction.
In a Cartesian coordinate system with the z—axis along the wave propagation direction and F aloug the x—direction:

E=ks, H=Hj

The i*" component of the linear momentumn flowing into the surface (in the direction 7 = 2) per unit time per unit
cross section is therefore

; ] 1 - 1 ) 1 . )
i = Z(_Tij)"j = —Ujs = —¢(Ei 3 — §E2¢5i,3) — po(H; Hs — §H2¢5i,3) = Q(éoE2 + poH?)6; 3
3

In the chosen coordinate system, the only non-vanishing component is p,. T'he force exerted on the wave from the
surface per unit area (according to Newton’s second law):

1,
F,=A0p,=(0—p;) = —5(6015‘/'2 + po H?)

Therefore, the radiation pressure on the surface (Newton’s third law):

P, = —F, = Z(coE* + upH?)

ol —

which is the energy density in the electromagnetic wave.

Problem 6.13

(a) Note: only need to work out the first non-zero terms in electric/magnetic fields. ‘Lo a good approximation, the
conductors are at equipotential and have uniform surface charge distributions. Choose a Cartesian coordinate systein
with its origin at the center of the capacitor, the x—axis parallel to the edge ¢ and pointing to the current feed, the
y— axis perpendicular to the two planes. Let Q(t) = Qoe™* be the total charge on the bottom plate, the electric
field in between the plates is therefore

- t 1 .
B = 2= LD iy
€0 €o ab

The charge on the ¢’ < x portion of the bottom plate is:

. 1 .
Q(F, t) =] b(.'l, + %)O(t) = %e—“"tb(w -+ %) = (‘—z- + —)Qoe_th
The surface current density
o 10Q(rt) . 1w Qo g
=3 =gtz
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