PHYSICS 200C, SPRING 2017
ELECTRICITY AND MAGNETISM

Assignment One, Due Wednesday, April 12, 5:00 pm.

[1.] In class we discussed the electric field strength in an atom, at the surface of the earth
in solar radiation, and in a laser one of you used as an undergraduate. Perform a similar
estimate of the electric field one centimeter away from a cell phone. One approach is to get
a number for the power employed by your cell phone in broadcasting to a satellite. You
could do that by looking up the energy stored in a typical cell phone battery, assuming all
the energy a cell phone uses is involved in transmitting (is that right?), and then asking how
long you can talk before your battery is drained.

[2.] We decided the electric field in solar radiation is “small” (in the sense that it was much,
much less than the field acting on an electron due to a proton inside an atom. Does this
“smallness” mean there are very few photons? Estimate the flux of visible photons a distance
one meter away from a one hundred Watt light bulb. What about the number of photons per
cubic wavelength 100 km away from an isotropic FM antenna with a power of 100 Watts at
10% Hz? Discuss the relevance of your answers to the fact that in this course we are speaking
of electric and magnetic fields, and ignoring the discrete photon aspect.

[3.] A conducting metal sphere of radius a carries a free charge ¢ and is surrounded by a
dielectric sphere of radius b > a. What is the potential at the center of the sphere?

[4.] Consider a point charge in a spherical tank of water. What are E,ﬁ,ﬁ inside the
sphere? What are the induced volume and surface charge densities?

[5.] Redo problem [4] for a dipole at the center of the sphere.
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7 Point Charge pléced at the center of a Spherical

Tank of Water

The geometry of the problem is shown in figure 4. We use Gauss’ law to get the electric
displacement in the water. The electric displacement (and electric field) is radial and inde-
pendent of angle. Thus assume a small spherical shell centered on the charge. Because the
filed is radial the electric displacement, D’ equals the electric diaplacement in the water, D.
This means;
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Figure 4: The geometry of a problem with a point charge q placed at the center of a spherical
tank of water

§D-dA = Qprec = q
Thus because of symmetry;

D=4 %
and D = ¢E. Then the polarization is,

P = eler—1D)E = eoer — 1)4%5;%
The Volume charge density is ;

_ v.p_ 102 _

Thus there is no volume charge density. The surface charge density at r = a is;
c=P.7 = eo(er—l)E = egle, — 1) 1 —q2'
dme ¢
There is an inner induced charge symmetrically placed about q at some finite radius so that

the total induced charge sums to zero. Outside the water tank the field is the same as the
field from a point charge q in the vacuum.
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8 Dipole placed at the center of a Spherical Tank of
Water

This problem is similar to the problem in the last section, but the point charge is replaced
by a dipole aligned along the 2 axis. The field of the dipole in vacuum is;

E; = fcr%[2 cos(0)7 + sin(6) 4]
We put this dipole inside a small spherical volume of radius, b, in the center of the tank in
order to keep the solution appropriately bounded as r — 0. Thus the boundry conditions at
r=2b are;

eE.(water) = e E,(vacuum,)

Ey(water) = Ej(vacuum)
Therefore inside the water;

E(water) = %[2@ cos(0) 7 + sin(6) 8]

We solve for the potential in the water using separation of variables. The solution has the
forms;

r>a

V =Y Ar~ U P(2)
b<r<a

V =Y [Bir~ ™Y + Crl)P(x)

Now match the boundary conditions at r = b.
€[2B;1/b® — Ci]cos(6) = 2eorp/b® cos(6)
(1/b)[B,/b% + Cib]sin(0) = kp/b> sin(6)

All other coefficients vanish. Solve for By, and C.

Bl = %[Gr + 2]
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2
01 = 36—’:55[67- bl 1]

This gives the potential;

2(e,
b

-1
V = 3’%[6?th + - )r]cos(é?)

From this one gets the field;

G rppet?  Ae—Dr o
E = g = + =] cos(6) 7 +
2er = 1)1 . v

2 4 26 = Dy sings) 4

The polrization is P = €y(e, — 1)E. So that the volume charge density is;

— —

p = —V(eler ~ 1)E)

eo(eg;é) /ip[[z(err;" 2 _ 2(€Tb3_ 1)] cos(8) +

)

p = oD ) + (e~ 1)(r/1]cos()

The surface charge density is;

r==b

Skp
g = —{€— € - 7 COS 9
( O)JE?-?JE ( )

r=a

o= —(e— eo)fﬂ[er(l — &(a/b)?) + 2(a/b)?] cos(6)

Gt a’

Matching the boundry conditions at r = a must now be carefully done. As the field
does not — 0 as r — oo but has a dipole form, with the potential given by;

V = Qmp(?: —1 7 cos(6)

This potential should be subtracted from the dipole potential. The problem comes from
defining a dipole as a point.
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