PHYSICS 200B, WINTER 2017 ELECTRICITY AND MAGNETISM

Assignment Six, Due Monday, March 20, 5:00 pm.

[1.] The following three vector potentials describe the same magnetic field:

$$B_0 x \hat{\mathbf{y}}, \quad -B_0 y \hat{\mathbf{x}}, \quad \frac{1}{2} B_0 (x \hat{\mathbf{y}} - y \hat{\mathbf{x}}).$$

Find the magnetic field, and the gauge transformations relating the different choices of A.

- [2.] Consider the vector potential $\mathbf{A}(\mathbf{r}) = A_0 e^{-(x^2+y^2+z^2)/a^2} \hat{\mathbf{z}}$, where A_0 and a are constants.
- (a) Find and sketch the corresponding magnetic field.
- (b) Can this be a magneto static field? If yes, find the current distribution that would give rise to it, and if not, explain why not.
- (c) Is the vector potential given in the Coulomb gauge? If not, transform it to the Coulomb gauge to the best of your ability.
- [3.] There is an interstellar magnetic field throughout the Milky Way with a strength between 1 and 10 μ G. Taking an intermediate value of 3×10^{-6} G, and modelling the galaxy as a disk of diameter $\sim 10^{23}$ cm, and thickness 10^{21} cm, find the magnetic energy stored in the galaxy in order of magnitude. To get a sense of whether this is big or small, consider that all the stars in the galaxy put together are radiating 10^{44} ergs/sec. How many years of starlight is the magnetic energy worth?