Specific Heat of a Metallic Solid

It is an experimental observation that for a solid the specific heat is

\[c(T) = \gamma T + \alpha T^3 \]

This is usually emphasized graphically by plotting \(c(T)/T \) vs. \(T^2 \)

\[c(T)/T = \gamma + \alpha T^2 \]

Our goal is to understand the \(\alpha T^3 \) contribution.

We will come back to \(\gamma T \) after discussing electron motion in a metal.
Specific heat definition

\[C = \frac{d\langle E \rangle}{dT} \]

Increase \(T \)
e.g. particle, more fast, more KE

Alternate view \[d\langle E \rangle = C \, dT \]

\(\frac{d\langle E \rangle}{dP} \)

\(\Delta P \)

\(\Delta V \)

How much energy in response to change in temperature?

Physics is full of response functions

\[\chi = d\langle M \rangle / dB \]

Magnetic susceptibility

\[d\langle M \rangle = \chi \, dB \]

\[dJ = \sum dV \quad (\text{Conductivity} \; \Sigma = \frac{1}{R}) \]

\[dJ = \Sigma \\, dV \]

At a phase transition the response function often diverges.

If a system is about to become a spontaneous magnet \(M \neq 0 \) even for \(B = 0 \) then \(\chi \) is enormous.
Specific heat of ideal gas?

\[\langle E \rangle = \frac{3}{2} N k_B T \]

\[C = \frac{3}{2} N k_B \quad (T \text{ independent constant}) \]

Basic principle/rule of statistical mechanics (Boltzmann)