MIDTERM EXAM

Physics 140A– WINTER 2012

Instructions: Do any six of the eight problems.

[1.] The primitive lattice vectors of an fcc lattice are

$$\vec{a}_1 = \frac{1}{2} a \left(\hat{y} + \hat{z} \right)$$
 $\vec{a}_2 = \frac{1}{2} a \left(\hat{x} + \hat{z} \right)$ $\vec{a}_3 = \frac{1}{2} a \left(\hat{x} + \hat{y} \right)$

What is the volume of the unit cell V_c ? Compute the reciprocal lattice vectors \vec{b}_1 , \vec{b}_2 , \vec{b}_3 . Do you recognize these as a particular lattice type? What is the volume of the unit cell of the reciprocal lattice (volume of the "first Brillouin zone")?

[2.] Consider a mass spring-system with all springs identical and two different, alternating, masses M_1 and M_2 . Describe the normal mode with the lowest frequency ω . (Draw a picture of the motion of the masses.) What is the value of ω ? Describe two more normal modes, again drawing pictures of how the masses move. What are the frequencies of these modes?

[3.] An alternative to regarding the fcc structure as having a single atom basis with the $\vec{a}_1, \vec{a}_2, \vec{a}_3$ in problem [1] is to consider it to have a cubic unit cell of sides a and a four atom basis, with atoms at $(x_j, y_j, z_j) = (0, 0, 0), (0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0)$. Then the structure factor S_G for a reciprocal lattice vector $\vec{G} = v_1\vec{b}_1 + v_2\vec{b}_2 + v_3\vec{b}_3$ is given by,

$$S(v_1 v_2 v_3) = \sum_j f_j \exp(-2\pi i (v_1 x_j + v_2 y_j + v_3 z_j))$$

Assume the atoms are identical so that $f_j = f$. Compute $S(v_1 v_2 v_3)$. What are the conditions on $v_1 v_2 v_3$ so that S does not vanish? (That is, what are the "allowed reflections"?)

[4.] What is graphene and what is its structure? Is it possible to describe the atomic positions without using a basis? That is, can you write the atomic positions as $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2$ with n_1 and n_2 any integers and \vec{a}_1, \vec{a}_2 two primitive lattice vectors? Why or why not?

[5.] Show that the volume of the first Brillouin zone is $(2\pi)^3/V_c$ where V_c is the volume of the crystal primitive cell.

[6.] The hydrogen atom number density ground state is $n(r) = (\pi a_0^3)^{-1} \exp(-2r/a_0)$, where a_0 is the Bohr radius. Show that the form factor

$$f_G = 4\pi \int dr \, n(r) \, r^2 \, \frac{\sin Gr}{Gr} = \frac{16}{(4+G^2 \, a_0^2)^2}$$

What are the limiting values of f_G at small and large G?

[7.] An x-ray scatters elastically off a crystal. What can you say about possible values of its change in momentum? Using your answer, prove that a Bragg peak can arise only if the incoming wave vector \vec{k} lies on a plane bisecting one of the reciprocal lattice vectors \vec{G} . Since these planes are only a two dimensional subset of a three dimensional space, the chance of \vec{k} satisfying this condition is incredibly small. How do experimentalists solve this problem?

[8.] The participation ratio for a normalized vector \vec{v} with components v_n (where $n = 1, 2, 3, \dots N$) is defined as,

$$\mathcal{P} = \Big(\sum_{n=1}^N v_n^4\Big)^{-1}$$

Consider a vector \vec{v} with only one nonzero component. What must the value of the component be for \vec{v} to be normalized? Compute \mathcal{P} for such a \vec{v} . Does it matter which component is the nonzero one?

Consider a vector \vec{v} with all components equal. What must the value of the components be for \vec{v} to be normalized? Compute \mathcal{P} for such a \vec{v} .

Comment on your results. Does the name "participation ratio" make sense for these two extreme examples?