PHYSICS 110A, WINTER 2017

ELECTRICITY AND MAGNETISM

Assignment Eight, Due Monday, March 19, noon.
[1.] A point charge q is located at position $(x, y, z)=(0,0, d)$. The dielectric constant is ϵ_{1} for $z>0$ and ϵ_{2} for $z<0$. Compute the potential and electric fields at all points in space. Sketch the electric field lines. Hint: The method of images is useful, as in the problem of a point charge near an infinite metallic plane. However, note the boundary conditions are different from that situation, where the electric field must be perpendicular to the surface.
[2.] Griffiths 4-02.
[3.] Griffiths 4-11.
[4.] Griffiths 4-18.
[5.] Griffiths 4-26.
[6.] Griffiths 4-31.
[7.] Extra credit: A sphere of dielectric constant ϵ is placed in a uniform external electric field. Compute the potential everywhere in space, as well as the volume(surface) polarization charges within(on) the sphere.

