PHYSICS 110A, WINTER 2017
 ELECTRICITY AND MAGNETISM

Assignment Five, Due Friday, February 16, 5:00 pm.
[1.] Griffiths Problem 7, Chapter 3.
[2.] Griffiths Problem 12, Chapter 3.
[3.] Find the analytic solution of the one-dimensional Poisson equation with $\rho(x)=12 \epsilon_{0} x^{2}$,

$$
-\frac{d^{2} \phi}{d x^{2}}=12 x^{2}
$$

with boundary conditions $\phi(0)=\phi(1)=0$. What is the value of the quantity,

$$
E=\int_{0}^{1}\left[\frac{1}{2}\left(\frac{d \phi}{d x}\right)^{2}-12 x^{2} \phi\right] d x ?
$$

and what is its physical significance?
[4.] (extra credit) Solve problem 3 numerically. Use $d x=0.1$. Make a plot containing $\phi(x)$ at a few times during the course of the iteration, and also containing the analytic solution. (I will talk about this problem on Wednesday in the "problem session" if you need guidance.)
[5.] (extra, extra credit) Solve Laplace's equation $\nabla^{2} \phi=0$ for the potential $\phi(x, y)$ for the square region in the figure, with the boundary conditions shown. Use the iterative method discussed in class, whose form in $d=2($ with $\rho=0)$ is,

$$
\phi(i, j)=\frac{1}{4}[\phi(i+1, j)+\phi(i-1, j)+\phi(i, j-1)+\phi(i, j+1)] .
$$

Use $d x=0.1$ and $a=1$. Compare your solution with the analytic one obtained in class by plotting the two results for $\phi(x, y=a / 2), 0<x<a$ on the same graph. Make a second graph comparing the analytic and numeric solutions for a vertical cut, $\phi(x=a / 2, y), 0<$ $y<a$.

