[1.] Consider a wire of length a and uniform linear charge density λ. Compute the electric field \mathbf{E} along the axis of the wire. Consider both the case when you are evaluating \mathbf{E} at points outside the wire, and for points inside the wire.
[2.] Compute the electric field at the center of a thin circular ring of radius R if the ring is divided into two semicircles (by a thin piece of insulator) and has charge per unit length $+\lambda_{1}$ on one semicircle and $-\lambda_{2}$ on the other semicircle.
[3.] Griffiths Problem 5, Chapter 2.
[4.] Griffiths Problem 7, Chapter 2.
[5.] Griffiths Problem 8, Chapter 2.
[6.] Griffiths Problem 9, Chapter 2.
[7.] Griffiths Problem 14, Chapter 2.

