PHYSICS 110A, WINTER 2017
 ELECTRICITY AND MAGNETISM

Assignment Two, Due Friday, January 19, 5:00 pm.
[1.] Compute the divergence of the vector field

$$
\mathbf{v}=C \mathbf{r}
$$

In a week or so we will prove this is the electric field inside a sphere with uniform charge density ρ, if we define $C=4 \pi k \rho / 3$. (You probably saw this problem in lower division E\&M.) Using that statement, discuss the consistency of your result with the Maxwell Equation $\nabla \cdot \mathbf{E}=4 \pi k \rho$ which tells us the divergence of \mathbf{E} measures the charge density.
[2.] Compute the curl of the vector field

$$
\mathbf{v}=C(x \hat{\mathbf{y}}-y \hat{\mathbf{x}})
$$

In Physics 110B you will prove this is the magnetic field inside a long straight wire with uniform current density J, if we define $C=\mu_{0} J / 2$. (You probably saw this problem in lower division E\&M.) Using that statement, discuss the consistency of your result with the Maxwell Equation $\nabla \times \mathbf{B}=\mu_{0} J$ which tells us the curl of \mathbf{B} measures the current density.
[3.] Griffiths Problem 54, Chapter 1.
[4.] Griffiths Problem 55, Chapter 1.
[5.] Griffiths Problem 56, Chapter 1.
[6.] Griffiths Problem 57, Chapter 1.
[7.] Griffiths Problem 61, Chapter 1.
[8.] It is straightforward to compute the gradient of a given scalar function. In this problem we attempt the reverse process. Verify the force

$$
\mathbf{F}=\left(3 x^{2} y z-3 y\right) \hat{\mathbf{x}}+\left(x^{3} z-3 x\right) \hat{\mathbf{y}}+\left(x^{3} y+2 z\right) \hat{\mathbf{z}}
$$

is conservative, and find a potential ϕ such that $\mathbf{F}=-\nabla \phi$.
[9.] It is straightforward to compute the curl of a given vector function. In this problem we attempt the reverse process. Find the vector field \mathbf{A} such that $\mathbf{v}=\nabla \times \mathbf{A}$ for

$$
\mathbf{v}=(y+z) \hat{\mathbf{x}}+(x-z) \hat{\mathbf{y}}+\left(x^{2}+y^{2}\right) \hat{\mathbf{z}}
$$

[10.] Compute the integral of $\nabla \cdot \mathbf{v}$ over the region $x^{2}+y^{2}+z^{2} \leq 25$ for the vector field

$$
\mathbf{v}=\left(x^{2}+y^{2}+z^{2}\right)(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}})
$$

