
PHYSICS 104B, WINTER 2010

ASSIGNMENT FIVE SOLUTIONS

[1.] For uniform m = 1.0 and springs g = 2.0 the eigenvalues have the analytic form,

λk =
2g

m
(1 − cos k)

k = kn =
2πn

N
=

2π

N
{−N

2
+ 1,−N

2
+ 2, · · · N

2
}

The code jacobi test yields

eigenvalues:

8.000 0.000 0.536 7.464 7.464 0.536

2.000 6.000 6.000 2.000 4.000 4.000

These are readily seen to agree with the analytic formula The first two values are for
k = π (i.e. n=N/2) and k = 0 (i.e. n=0). The third is k = π

6
(i.e. n=1) and is degenerate

with k = −π

6
(i.e. n=-1), the sixth eigenvalue.

For eigenvectors, The code jacobi test yields (only the first two eigenvalues/eigenvectors
are listed below):

eigenvalues:

8.000 0.000 ...

eigenvectors:

0.289 0.289 ...

-0.289 0.289 ...

0.289 0.289 ...

-0.289 0.289 ...

0.289 0.289 ...

-0.289 0.289 ...

0.289 0.289 ...

-0.289 0.289 ...

0.289 0.289 ...

-0.289 0.289 ...

0.289 0.289 ...

-0.289 0.289 ...

These correctly correspond to k = π, where the masses beat opposite to each other with
eigenvector components V l

k=π
= 1√

N
eiπl, and k = 0 where they all move together (at zero

energy cost) and V l

k=0 = 1√
N

.

1

Turning to a more macroscopic system, for N = 128 the first eight eigenvalues and
participation ratios are:

eigenvalues:

8.00000 0.00482 0.04329 7.99518 4.39207 3.80373 1.03620 7.69552

participation ratios:

127.99989 85.33268 85.33334 85.33395 85.33334 85.33335 85.33328 85.33329

(I have reformatted the print statement in jacobi test to give more significant figures for
the eigenvalues.) Notice jacobi does not sort the eigenvalues. This is often inconvenient
when making plots and analyzing data, so you might want to include a sorting routine to
your program. The key point here is that all the participation ratios are close to N = 128.

When there is a defect spring, tighter than the rest g = 4, the first eight eigenvalues
and participation ratios given by jacobi test are (if you put the defect spring between the
first two masses in the chain):

eigenvalues:

10.66667 0.00000 7.99518 0.00482 4.02916 3.83164 7.96896 1.03620

participation ratios:

2.50001 128.00002 85.33228 85.33340 102.66785 82.47289 84.02576 85.33333

Notice there is one participation ratios which is much smaller than all the others. This is
the localized mode. Note that since jacobi doesn’t do any sorting, in principle you might
have to look through the whole list of 128 eigenvalues and participation ratios to find the
localized one(s). It happened for this case that it appeared right at the top of the list.

Figure 1 shows a plot of the eigenspectrum. You will notice that one eigenvalue is
split off from all the others. This is a characteristic feature of localization. Physically it
is reasonable: if an energy level is all alone it is less likely to interact (resonate) with the
others, and hence be localized.

0 32 64 96 128
n

0

4

8

12

λ n

g =2
g’=4
m =1
N =128

Figure 1: The eigenspectrum for N = 128, g =
2,m = 1 and a single defect spring with g′ =
4. One of the localized modes really jumps
out, with an eigenvalue split off much higher
than the continuum of delocalized modes. You
might also notice that the pair-wise degener-
acy of the eigenvalues present in the ‘perfect
crystal’ is lifted. This is a commonly occurring
phenomenon you should know about: small
perturbations often break degeneracies.

2

Figure 2 shows the components of the localized eigenvectors. You can see they are big
near the defect spring between masses 64 and 65 and fall off. The components alternate
sign from mass to mass. This is because the localized mode develops from the eigenvector
associalted with k = π which has largest eigenvalue.

32 48 64 80 96
n

-0.5

-0.25

0

0.25

0.5

V
n

g’=4
g’=2.5
g’=2.125

g=2
m=1
N=128

Figure 2: The components of the localized
mode for N = 128, g = 2,m = 1 and a sin-
gle defect spring with g′ = 4, 2.5, 2.125. The
defect spring was placed between masses 64
and 65. Notice that as g′ → g the local-
ized mode spreads out more and more. Of
course when g′ = g there is no defect and no
localized mode. The associated eigenenergies
of the localized modes are 10.667, 8.333, 8.028,
for g′ = 4, 2.5, 2.125 respectively. The partici-
pation ratios are 2.500, 5.200, 17.058.

Figure 3 shows an arbitrarily selected second eigenvector, ie. not the localized one.
Here I have chosen to show the square of the components. The components are large on
many sites: the eigenvecrtors are not localized. It is interesting that some of these vectors
have small components near where the localized state lives. I think this is a consequence
of the fact that we have a real, symmetric matrix whose eigenvectors are orthogonal.

0 50 100
n

0

0.005

0.01

0.015

0.02

0.025

V
n2

g’=4
g’=2.5
g’=1.25

g=2
m=1
N=128 Figure 3: The squares of the components of

the first eigenvector (i.e. an arbitrary eigen-
vector which is not the special localized one)
for the same parameters as in Figure 2. This
shows that the other eigenvectors indeed do
not get localized by the defect: The compo-
nents are large on many sites.

3

[2.] We fill the diagonal and upper triangular part of a matrix of dimension N randomly
with the entries ± 1

2
√

N
. The lower triangular part is chosen so the matrix is symmetric.

Amazingly, the eigenvalue distribution (in the limit N → ∞) is a perfect semi-circle of
radius one!

P(λ) =
2

π

√
1 − λ2 (1)

Figure 4 shows the result for ten matrices of dimension N = 1024. Apparently this N

is large enough that the eigenvalue distribution looks quite like the thermodynamic limit
N = ∞. If you look closely you can see a bit of rounding at λ = ±1 so that there is a
small probability of eigenvalues with |λ| > 1, associated with the fact that N is finite.

-1 -0.5 0 0.5 1
λ

0

0.5

1

P
(λ

)

N=1024
Nmat=10 Figure 4: Eigenvalue distribution for a matrix

filled randomly with entries ± 1

2
√

N
and also

constrained to be symmetric. Although the
matrix is random, the distribution of eigen-
values is far from random: it is a semicircle of
unit radius.

4

[3.] I find that the fraction of bankrupt players is f =0.743, and the average person
leaves with B =$4.16 of his/her original $40. These answers of course have some error
bars. Different sets of 10000 people would have a somewhat altered bankruptcy fraction.
Running my code with several seeds gives the following for (f,B):
(0.728, $4.52) (0.739, $4.14) (0.736, $4.23).
So you can see the error bars on f are around 0.005.

A very good rule to know (valid for our next topic of Monte Carlo as well) is that when
we do a simulation involving Nplayers independent events, the error bars fall as 1

√

Nplayers.
If I run with 106 players instead of 104, I get values f = 0.7387, 0.7382, 0.7380, 0.7375, 0.7383.
using different random number seeds. The error bar now is clearly less that 0.001.

5

[4.] The eigenvalues are now complex, since the matrix is not symmetric. It turns out
they are uniformly distributed on the unit disk in the complex plane. Figures 5,6,7
give the distribution for matrices of dimension N = 32, 128, 512 respectively. I generated
400, 100, 25 matrices for the three N values so that the total number of eigenvalues (12800)
is the same for all N . NOTE: I don’t quite like the density of real eigenvalues, which
seems too high.

-1 -0.5 0 0.5 1
Re(λ)

-1

-0.5

0

0.5

1

Im
(λ

)

N=32

Figure 5: Eigenvalue distribution for 400 ma-
trices of dimension N = 128 filled randomly
with entries ± 1√

N
and allowed to be non-

symmetric. Although the matrix is random,
the distribution of eigenvalues is far from ran-
dom: they fill the unit disk in the complex
plane uniformly.

-1 -0.5 0 0.5 1
Re(λ)

-1

-0.5

0

0.5

1

Im
(λ

)

N=128

Figure 6: Same as Figure 5 except for 100
matrices of dimension N = 128.

6

-1 -0.5 0 0.5 1
Re(λ)

-1

-0.5

0

0.5

1

Im
(λ

)
N=512

Figure 7: Same as Figure 5 except for 25 ma-
trices of dimension N = 512.

CODES

Problem 1: I just used jacobi test as available on the course website. The one small
addition was the computation of the participation ratios:

for(j = 1; j <= N; j++) {

partic=0.;

for(i = 1; i <= N; i++) {

partic+=pow(eigenvectors[i][j],4);

}

partic=1./partic;

printf(format2, partic);

}

Problem 2: Again, the main routine here is jacobi test. You need a small ancillary code
to generate the random matrix. The essence of that routine is this:

for (i=0 ; i<N ; i++) {

for (j=i ; j<N ; j++) {

your favorite random number generator returning 0<r<1

if (r<0.5)

A[i][j]=-1.;

else

A[i][j]= 1.;

A[i][j]=A[i][j]/(2.*sqrt(N));

A[j][i]=A[i][j];

}

}

7

Problem 3: Just for fun, I give this program in fortran.

implicit none

integer*8 M

integer*8 a,b,i,seed,Npeople,Ngames,j,k,bankroll,br

integer*8 busted,avefinalbr

real*8 r,rM,p

write (6,*) ’enter seed,Npeople,Ngames,p,bankroll’

read (5,*) seed,Npeople,Ngames,p,bankroll

b=0

a=7*7*7*7*7

M= 2*2*2*2*2*2*2*2

M=M*2*2*2*2*2*2*2*2

M=M*2*2*2*2*2*2*2*2

M=M*2*2*2*2*2*2*2-1

rM=dfloat(M)

i=seed

r=dfloat(i)/rM

busted=0

avefinalbr=0

do 200 j=1,Npeople

br=bankroll

do 100 k=1,Ngames

i=mod(a*i+b,M)

r=dfloat(i)/rM

if (r.le.p) then

br=br+1

else

br=br-1

endif

if (br.eq.0) then

write (67,*) ’player ’,j,’ went bankrupt’

busted=busted+1

go to 120

endif

100 continue

120 write (67,*) ’player ’,j,’ final bankroll ’,br

if (br.ge.0) then

avefinalbr=avefinalbr+br

endif

200 continue

write (67,*) ’fraction of bankrupt players= ’,

8

1 float(busted)/float(Npeople)

write (6,*) ’fraction of bankrupt players= ’,

1 float(busted)/float(Npeople)

write (67,*) ’average final bankroll= ’,

1 float(avefinalbr)/float(Npeople)

write (6,*) ’average final bankroll= ’,

1 float(avefinalbr)/float(Npeople)

990 format(i35,f12.8)

end

Problem 4: This one I have to give in fortran because I do not have a diagonalizer for
non-symmetric matrices in C:

implicit none

integer imat,Nmat,iran

integer i,j

real*8 ran2,r

integer N

parameter (N=1024)

integer N2,N4

parameter (N2=2*N,N4=4*N)

complex*16 EC(N),A(N,N),VL(N,N),VR(N,N),WORK(N4)

real*8 RWORK(N2)

integer INFO

character*1 trans

real*8 mean

character*80 arg

character*80 outname

c INPUT STUFF

write (6,*) ’outname’

read(5,1789) outname

1789 format(A79)

write (6,*) ’ # matrices, iran’

read (5,*) Nmat,iran

open(unit=67, status=’new’,file=outname)

c ECHO BACK TO OUTPUT FILE

write (67,*) ’ ’

9

write (67,990) N

990 format(’ matrix dimension N= ’,i8)

write (67,991) Nmat

991 format(’ # of realizations Nmat= ’,i8)

write (67,992) iran

992 format(’ random # seed iran= ’,i8)

c LOOP OVER NUMBER OF DISORDER REALIZATIONS

do 1000 imat=1,Nmat

write (67,*) ’ matrix number ’,imat

write (6,*) ’ matrix number ’,imat

c SET UP THE MATRIX

do 50 i=1,N

do 30 j=1,N

r=ran2(iran)

if (r.le.0.5d0) then

A(i,j)=(1.d0,0.d0)

else

A(i,j)=(-1.d0,0.d0)

endif

A(i,j)=A(i,j)/(dsqrt(dfloat(N)))

30 continue

50 continue

888 format(2i5,2f10.5)

c GET THE EIGENVALUES/EIGENVECTORS

call ZGEEV(’n’,’v’,N,A,N,EC,VL,N,VR,N,

1 WORK,N4,RWORK,INFO)

c WRITE THEM OUT

do 100 i=1,N

write (67,970) i,dreal(EC(i)),dimag(EC(i))

100 continue

970 format(i8,2f12.6)

1000 continue

end

10

