

PHYSICS 104A, FALL 2015 MATHEMATICAL PHYSICS Midterm Exam

- [1.] Write down the solutions to the equation $z^6 = 2$.
- [2.] In understanding the behavior of spin-1 particles in quantum mechanics, you will encounter the 3×3 matrix

$$S_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

What are the possible values you could get if you measure the x component of spin of a spin-one particle in an experiment? If your system is in the state $\vec{\psi} = (1, 0, 0)$, what are the probabilities of measuring the different possible values of S_x ?

- [3.] What is the definition of a projection operator? Prove that the eigenvalues of a projection operator must be $\lambda = 0, 1$.
- [4.] Use binomial theorem (left equation below) to evaluate the sum S on the right.

$$(p+q)^N = \sum_{j=0}^N \binom{N}{j} p^j q^{N-j}$$
 $S = \sum_{j=0}^N \binom{N}{j} j \, p^j q^{N-j}$

- [5.] Two equal masses m are connected to each other by a spring of force constant k. One of the masses is also connected to a "wall" (ie a completely stationary object) by a spring of force constant 2k.
- (a) Write down the equations of motion F = ma for the two masses.
- (b) Assume a solution $x_l = v_l e^{i\omega t}$ for l = 1, 2. What equations do v_1 and v_2 obey?
- (c) Compute the normal mode frequencies.
- (d) Compute the normal mode vectors.
- (e) In previous problems we have always found $\omega = 0$ as one of the frequencies. Did that happen here? Give a physical argument why still having $\omega = 0$ makes sense, or why you do not expect $\omega = 0$, depending on your answer.