## Final Exam, Physics 104A, Fall 2016

Please do only five of the following six problems.
[1.](a) What is the definition of a Hermitian matrix? Give an example of dimension 2 that contains no zero entries. (b) What is true of the eigenvalues and eigenvectors of a Hermitian matrix? (c) What is the definition of a orthogonal matrix? (d) Suppose $\mathcal{O}$ is an orthogonal matrix and $\vec{w}=\mathcal{O} \vec{v}$ where $\vec{v}$ and $\vec{w}$ have real components. What property does $\vec{w}$ inherit from $\vec{v}$ ? (e) Give a physical context in which orthogonal matrices arise, and briefly explain your answer. (f) Extra Credit: Prove your answer to (d).
[2.] Compute the Fourier Series for a periodic function $f(x+8)=f(x)$, with $f(x)=6$ when $0<x<2$ and $f(x)=0$ when $2<x<8$. Sketch $f(x)$ and the contributions of the $a_{0}, a_{1}$, and $b_{1}$ terms. (Note: when you add these up they should look fairly reasonable, but not quite as close to $f(x)$ as some of the other examples we have done.)
[3.] (a) Give an example of two matrices $A$ and $B$ which do not commute when multiplied. (b) Prove that $(A B)^{T}=B^{T} A^{T}$. Carefully justify each step of your proof.
[4.] (a) Write the matrix for the operator which projects a vector onto the line $y=x / 3$. Use as a basis $\hat{e}_{1}$, the unit vector parallel to the $\hat{x}$ axis, and $\hat{e}_{2}$, the unit vector parallel to the $\hat{y}$ axis. (b) Suppose instead you change basis to $\hat{f}_{1}=\left(3 \hat{e}_{1}+\hat{e}_{2}\right) / \sqrt{10}$ and $\hat{f}_{2}=\left(-\hat{e}_{1}+3 \hat{e}_{2}\right) / \sqrt{10}$. What is the matrix for the operator now? Interpret your answer.
[5.] A string is stretched from $x=0$ to $x=L$. Its displacement from equilibrium at position $x$ and time $t$ is denoted by $y(x, t)$, and obeys the wave equation,

$$
\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}
$$

(a) Construct the general solution by the separation of variables method. How do you use the fact that the string is tied down at $x=0$ and $x=L$ to narrow down the possible solutions? (b) Compute $y(x, t)$ if you are also told the initial displacement and velocity,

$$
y(x, t=0)=\left.0 \quad \frac{\partial y}{\partial t}(x, t)\right|_{t=0}=4 k x(L-x)
$$

Useful integrals: $\int x^{2} \sin k x d x=-x^{2} \cos k x / k+2 x \sin k x / k^{2}+2 \cos k x / k^{3}$.
$\int x \sin k x d x=-x \cos k x / k+\sin k x / k^{2}$.
[6.] Solve Laplace's equation

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0
$$

inside the rectangular box $0<x<L$ and $0<y<H$. The edges of the box have the potentials shown in the figure.


