PHYSICS 104A, FALL 2015
 MATHEMATICAL PHYSICS

Assignment Eight, Due Tuesday, December 8, 5:00 pm.

Problems 2-4 are the same as the last three problems of Assignment 7, except notice the additional final part of problem 4.
[1.] A quantum mechanical particle has initial wave function $\psi(x, 0)=n e^{-a|x| / 2}$. What value of n is needed for normalization? What is the distribution of momentum $c(k)$? Check that $c(k)$ is normalized. Compute $\Delta x \Delta p$. Does it have the minimum possible value $\hbar / 2$ as did the Gaussian wave function discussed in class?
[2.] The temperature of a thin metallic plate is given by $T(x, y)=x y-y$. Sketch the isothermal curves corresponding to $T=0,1,2$. In what direction is the temperature changing most rapidly at the point $(x, y)=(1,1)$? What is the directional derivative of T at $(1,1)$ along the direction of $3 \hat{i}+4 \hat{j}$?
[3.] Compute the divergence and curl of
(a) $\vec{V}=x \hat{i}+y \hat{j}+z \hat{k}$
(b) $\vec{V}=y \hat{i}+z \hat{j}+x \hat{k}$
(c) $\vec{V}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$
(d) $\vec{V}=x^{2} y \hat{i}+y^{2} x \hat{j}+x y z \hat{k}$
[4.] Are the following force fields conservative?

$$
\begin{aligned}
& \vec{F}_{1}=-y \hat{i}+x \hat{j}+z \hat{k} \\
& \vec{F}_{2}=+y \hat{i}+x \hat{j}+z \hat{k}
\end{aligned}
$$

Compute their integrals for a particle moving clockwise around the circle $x^{2}+y^{2}=a^{2}$ at $z=0$. You just computed $\int_{\mathcal{C}} \vec{F} \cdot d \vec{l}$. Show that you get same answer by using Green's theorem, $\int_{\mathcal{C}} \vec{F} \cdot d \vec{l}=\int_{\mathcal{S}} \vec{\nabla} \times \vec{F} \cdot \hat{n} d A$.
[5.] Show that Gauss's law is satisfied for the vector field of problem 3a where the volume being integrated over is a sphere of radius R centered at the origin.

