PHYSICS 104A, FALL 2018
 MATHEMATICAL PHYSICS

Assignment Seven, Due Monday, December 10, 5:00 pm.
[1.] Do the Fourier decompositions of the periodic functions shown in the figures.

[2.] 'Rectification' of $V(t)$ preserves unchanged any positive voltages, but sets any negative voltage to zero. What is the harmonic content resulting from rectification of the voltage from a wall socket, $V_{\mathrm{ac}}(t)=120 \sin (120 \pi t)$? That is, what frequencies does it contain and in what proportions?
[3.] A quantum mechanical particle is confined to a box $0<x<L$ and has initial wave function $\psi(x, t=0)=A$ for $L / 4<x<3 L / 4$. That is, the particle starts out in the central half of the box. Compute $\psi(x, t)$.
[4.] The displacement from equilibrium of a violin string of length L is given by $y(x, t)$. The string is plucked so that its initial displacement is

$$
\begin{array}{ll}
y(x, t=0)=\frac{2 h}{L} x & 0<x<\frac{L}{2} \\
y(x, t=0)=\frac{2 h}{L}(L-x) & \frac{L}{2}<x<L
\end{array}
$$

It is released from rest so that the initial velocity $\partial y(x, t) /\left.\partial t\right|_{t=0}=0$. Compute $y(x, t)$ for later times. (A considerable amount of the mathematics will be similar to problem number one.)
[5.] Solve Laplace's equation

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0
$$

inside the rectangular box $0<x<L$ and $0<y<H$. The edges of the box along the axes are grounded: $V(x=0, y)=0$ and $V(x, y=0)=0$, as is the potential along the top edge: $V(x, y=H)=0$. Along the right edge $x=L$ the potential rises linearly from $V(L, y=0)=0$ to $V(L, y=H)=V_{0}$. That is, $V(L, y)=V_{0} y / H$.
[6.] Cancelled!
[7.]
(a) Use the generating function to compute the first four Legendre polynomials.
(b) Verify by explicit integration that $P_{2}(x)$ is perpendicular to $P_{3}(x)$ and $P_{4}(x)$.
(c) Verify the normalization condition

$$
\int_{-1}^{1}\left(P_{l}(x)\right)^{2} d x=\frac{2}{2 l+1}
$$

for $l=2$.
(d) Verify the recursion relation

$$
l P_{l}(x)=(2 l-1) x P_{l-1}(x)-(l-1) P_{l-2}(x)
$$

is correct for $l=3$.

