PHYSICS 104A, FALL 2015
 MATHEMATICAL PHYSICS

Assignment Seven, Due Tuesday, November 24, 5:00 pm.
[1.] The displacement from equilibrium of a violin string of length L is given by $y(x, t)$. The string is plucked so that its initial displacement is

$$
\begin{array}{ll}
y(x, t=0)=\frac{2 h}{L} x & 0<x<\frac{L}{2} \\
y(x, t=0)=\frac{2 h}{L}(L-x) & \frac{L}{2}<x<L
\end{array}
$$

It is released from rest so that the initial velocity $\partial y(x, t) /\left.\partial t\right|_{t=0}=0$. Compute $y(x, t)$ for later times.
[2.] Solve Laplace's equation

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0
$$

inside the rectangular box $0<x<L$ and $0<y<H$. The edges of the box along the axes are grounded: $V(x=0, y)=0$ and $V(x, y=0)=0$. Along the other two edges the potential rises linearly from zero to $V(L, H)=V_{0}$. That is, $V(L, y)=V_{0} y / H$ and $V(x, H)=V_{0} x / L$. Hint: The Laplace equation is linear.
[3.] The temperature of a thin metallic plate is given by $T(x, y)=x y-y$. Sketch the isothermal curves corresponding to $T=0,1,2$. In what direction is the temperature changing most rapidly at the point $(x, y)=(1,1)$? What is the directional derivative of T at $(1,1)$ along the direction of $3 \hat{i}+4 \hat{j}$?
[4.] Compute the divergence and curl of
(a) $\vec{V}=x \hat{i}+y \hat{j}+z \hat{k}$
(b) $\vec{V}=y \hat{i}+z \hat{j}+x \hat{k}$
(c) $\vec{V}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$
(d) $\vec{V}=x^{2} y \hat{i}+y^{2} x \hat{j}+x y z \hat{k}$
[5.] Are the following force fields conservative?

$$
\begin{aligned}
\vec{F}_{1} & =-y \hat{i}+x \hat{j}+z \hat{k} \\
\vec{F}_{2} & =+y \hat{i}+x \hat{j}+z \hat{k}
\end{aligned}
$$

Compute their integrals for a particle moving clockwise around the circle $x^{2}+y^{2}=a^{2}$ at $z=0$.

