PHYSICS 104A, FALL 2018
MATHEMATICAL PHYSICS
Assignment Six, Due Monday, November 19, 5:00 pm.
[1.] The Hamiltonian of a quantum mechanical system, and its initial wavefunction, are given by

$$
H=\hbar \omega_{0}\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \vec{\Psi}(t=0)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / \sqrt{2}
\end{array}\right)
$$

Here ω_{0} is a number with the units of inverse time (frequency). Using the basic rule for time evolution in quantum mechanics, $\vec{\Psi}(t)=\exp (-i H t / \hbar) \vec{\Psi}(t=0)$, compute $\vec{\Psi}(t)$.
[2.] For the same quantum mechanical system of problem 2 , there is also a quantity Q you want to measure. It has the matrix

$$
Q=Q_{0}\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

What are the probabilities to get different possible values for Q ? (Note: the answers will depend on time!)
[3.] In class we solved the problem of two equal masses $m_{1}=m_{2}$ connected by a spring of force constant k. Generalize the solution to $m_{1} \neq m_{2}$. Write equations for $x_{1}(t)$ and $x_{2}(t)$ given $x_{1}(0), x_{2}(0), v_{1}(0)$, and $v_{2}(0)$.
[4.] Solve for the eigenfrequencies and eigenvectors (i.e. the normal modes) of four equal masses connected by three springs (i.e. with open boundary conditions).

