PHYSICS 104A, FALL 2018
 MATHEMATICAL PHYSICS

Assignment Five, Due Friday, November 2, 5:00 pm.
[1.] In understanding the behavior of spin- $1 / 2$ particles in quantum mechanics, you will encounter the 2×2 'Pauli matrices'

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Compute the inverses of σ_{x}, σ_{y}, and σ_{z}.
[2.] The 'commutator' of two matrices A and B is symbolized by $[A, B]$ and is defined by

$$
[A, B]=A B-B A
$$

Show that the 'spin' matrices

$$
S_{x}=\frac{\hbar}{2} \sigma_{x} \quad S_{y}=\frac{\hbar}{2} \sigma_{y} \quad S_{z}=\frac{\hbar}{2} \sigma_{z}
$$

obey

$$
\left[S_{x}, S_{y}\right]=i \hbar S_{z} \quad\left[S_{y}, S_{z}\right]=i \hbar S_{x} \quad\left[S_{z}, S_{x}\right]=i \hbar S_{y}
$$

[3.] to understand how spin wave functions evolve in time t you will need the exponentials of the Pauli matrices,

$$
A=e^{-i t \sigma_{x}} \quad B=e^{-i t \sigma_{y}} \quad C=e^{-i t \sigma_{z}}
$$

Using the definition

$$
e^{M}=I+M+\frac{1}{2} M^{2}+\frac{1}{6} M^{3}+\cdots
$$

compute A, B and C.
[4.] In understanding the behavior of spin-1 particles in quantum mechanics, you will encounter the 3×3 matrices

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad S_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) \quad S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Compute the commutators $\left[S_{x}, S_{y}\right]$, $\left[S_{y}, S_{z}\right]$, and $\left[S_{z}, S_{x}\right]$ for spin-1. How do the results compare to the spin- $1 / 2$ case?

