Assignment Five, Due Tuesday, November 3, 5:00 pm.
[1.] In the "usual" basis

$$
\hat{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \hat{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \hat{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

a vector \vec{v} has the components given below, and an operator \mathcal{O} is represented by the matrix also given below.

$$
\vec{v} "="\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right) \quad \mathcal{O} "="\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

What do the components of \vec{v} and the matrix representing \mathcal{O} become in the new basis:

$$
\hat{f}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \hat{f}_{2}=\left(\begin{array}{c}
0 \\
0.6 \\
0.8
\end{array}\right) \quad \hat{f}_{3}=\left(\begin{array}{c}
0 \\
-0.8 \\
0.6
\end{array}\right)
$$

You can use the formulae from class, but it might be even better to rederive them yourself so they really stick with you.
[2.] The Hamiltonian of a quantum mechanical system, and its initial wavefunction, are given by

$$
H=\hbar \omega_{0}\left(\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \vec{\Psi}(t=0)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / \sqrt{2}
\end{array}\right)
$$

Here ω_{0} is a number with the units of inverse time (frequency). Using the basic rule for time evolution in quantum mechanics, $\vec{\Psi}(t)=\exp (-i H t / \hbar) \vec{\Psi}(t=0)$, compute $\vec{\Psi}(t)$.
[3.] For the same quantum mechanical system of problem 2 , there is also a quantity Q you want to measure. It has the matrix

$$
Q=Q_{0}\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

What are the probabilities to get different possible values for Q ? (Note: the answers will depend on time!)

