$5-1$

$$
\begin{aligned}
& E=m c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1} 2 \quad(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x+\cdots \\
& =m c^{2}\left(1+\left(-\frac{1}{2}\right)\left(-\frac{v^{2}}{c^{2}}\right)+\frac{(-1 / 2)(-3)}{2}\left(\frac{-v^{2}}{c^{2}}\right)^{2}+\cdots\right. \\
& =m c^{2}\left(1+\frac{1}{2} \frac{x^{2}}{c^{2}}+3 / 8 v^{4} / c^{4}+\ldots\right) \\
& E=m c^{2}+\frac{1}{2} m v^{2}+3 / 8 m v^{2}\left(v^{2} / c^{2}\right)^{1} \\
& \text { rest usual } \\
& \text { (classical) } \\
& k \text {, ratio energy } \\
& \text { firstrelativiste } \\
& \text { correction: }
\end{aligned}
$$

Solution, Assignment 4, Problem 2, Fall 2018

The general formula for the probability of $N-n$ heads and n tails when a coin is tossed N times is

$$
\mathcal{P}(n)=\binom{N}{n} p^{N-n} q^{n}
$$

Here p is the probability of heads in a single toss, and $q=1-p$ is the probability of tails in a single toss.

For our problem with $N=10, p=0.6$, and $q=0.4$:

$$
\begin{array}{rll}
\mathcal{P}(10)=\binom{10}{10} p^{10} q^{0}=1(0.6)^{10}(0.4)^{0} & =0.00605 \\
\mathcal{P}(9)=\binom{10}{9} p^{9} q^{1}=10(0.6)^{9}(0.4)^{1} & =0.04031 \\
\mathcal{P}(8)=\binom{10}{8} p^{8} q^{2}=45(0.6)^{8}(0.4)^{2} & =0.12093 \\
\mathcal{P}(7)=\binom{10}{7} p^{7} q^{3}=120(0.6)^{7}(0.4)^{3} & =0.21499 \\
\mathcal{P}(6)=\binom{10}{6} p^{6} q^{4}=210(0.6)^{6}(0.4)^{4} & =0.25082 \\
\mathcal{P}(5)=\binom{10}{5} p^{5} q^{5}=252(0.6)^{5}(0.4)^{5} & =0.20065 \\
\mathcal{P}(4)=\binom{10}{4} p^{4} q^{6}=210(0.6)^{4}(0.4)^{6} & =0.11148 \\
\mathcal{P}(3)=\binom{10}{3} p^{3} q^{7}=120(0.6)^{3}(0.4)^{7} & =0.04247 \\
\mathcal{P}(2)=\binom{10}{2} p^{2} q^{8}=45(0.6)^{2}(0.4)^{8} & =0.01062 \\
\mathcal{P}(1)=\binom{10}{1} p^{1} q^{9}=10(0.6)^{1}(0.4)^{9} & =0.00157 \\
\mathcal{P}(0)=\binom{10}{0} p^{0} q^{10}=1(0.6)^{0}(0.4)^{10} & =0.00010
\end{array}
$$

The important think to notice is that the maximum probability is no longer when the numbers of heads and tails are equal. Instead it is when the number of heads is $N p$. Can you prove this?
prob of stopping right
In class we showed $\langle x\rangle=0$, if $p=q=1 / 2$
REviEW probfstepping yt

We did this by evaluating
we knar

$$
(p+q)^{N}=\sum\binom{N}{n} p^{n} q^{N-n}
$$

and, Differentiating $\partial / \partial p$

$$
\begin{aligned}
& N(p+q)^{N-1}=\sum\binom{N}{n} n p^{n-1} q^{N-n} \\
& N_{p}(p+q)^{N-1}=\sum\binom{N}{n} n p^{n} q^{N-n}
\end{aligned}
$$

Hence (using $p+q=1$)

$$
\langle x\rangle=N-2 N_{p}=N(1-2 p)=0 \text { if } p=1 / 2
$$

the root mean syrave is

$$
\left.\int_{\text {root }}^{\infty}\right|_{\text {mean }} ^{\left\langle x_{\rho}^{2}\right\rangle}=\sqrt{\sum_{n=0}^{N}(N-2 n)^{2}\binom{N}{n} \rho^{n} q^{N-n}}
$$

We reed $\sum n^{2}\binom{N}{n} \rho^{n} q^{N-n}$
which are get by doing another durvitue $\%$ op

$$
\begin{gathered}
N(N-1) p(p+q)^{N-2}+N(p+q)^{N-1} \\
=\sum\binom{N}{n} n^{2} p^{n-1} q^{N-n}
\end{gathered}
$$

so

$$
N(N-1) p^{2}(p+q)^{N-2}+N p(p+q)^{N-1}=\sum\binom{N}{n} n^{2} p q^{N-n}
$$

The rs (setting $p+q=1$)

$$
\begin{aligned}
\left\langle x^{2}\right\rangle= & N^{2}-4 N N p+4\left\{N(N-1) p^{2}+N_{p}\right\} \\
= & N^{2}\left(1-4 p+4 p^{2}\right)-4 N p^{2}+4 N_{p} \\
= & N^{2}(1-2 p)^{2}+4 N \underbrace{p(1-p)}_{1 / 4 \text { if } p=1 / 2} \\
& \quad 0 \text { if } p=1 / 2 \quad 1 / 2
\end{aligned}
$$

Solution, Assignment 4, Problem 4, Fall 2018

The important principle here is that in a random process with two equally likely outcomes (a random walk, a coin toss, etc) of N steps, the expected distances one gets away from the origin are proportional to \sqrt{N}. The 'proportional to' takes into account the 'trivial' dependence on the size of the individual steps. For example if each step is 3 feet, then the distances away will be $3 \sqrt{N}$.

So the 'fast' answer to this problem is that one expects the deviation from 5000 heads to be $\sqrt{10000}=100$. The thinking is that 5000 heads and 5000 tails corresponds to a random walker ending up at the origin (heads=left; tails=right). So one should not be surprised if there are 5100 heads and 4900 tails, but 5300 heads and 4700 tails would be surprising!

As discussed in class, one can also get this result more rigorously by using Stirling's formula

$$
\ln N!\sim N \ln N-N-0.5 \ln (2 \pi N)
$$

Using the result

$$
\mathcal{P}(n)=\binom{N}{n} \frac{1}{2^{N}}
$$

we see that the ratio of the probability of 5100 heads to the probability of 5000 heads (the most likely outcome for a fair coin) is

$$
\frac{\mathcal{P}(5100)}{\mathcal{P}(5000)}=\binom{10000}{5100}\binom{10000}{5000}^{-1}=\frac{5000!5000!}{5100!4900!}
$$

Stirlings formula and some basic properties of logarithms and the symmetry of the binomial coefficients gives us the logarithm of this ratio,

$$
\ln \left(\frac{\mathcal{P}(5100)}{\mathcal{P}(5000)}\right)=2(5000 \ln 5000-5000-0.5 \ln (10000 \pi)-5100 \ln 5100-5100-0.5 \ln (10200 \pi))
$$

Here are some results:

```
P(5050)/P(5000) = 0.6066
P(5100)/P(5000) = 0.1353
P(5150)/P(5000) = 0.0111
P(5200)/P(5000) = 0.0003
```

So the probality of 5100 heads is still reasonly high, about $1 / 8$ of the probability of 5000 heads. But 5150 heads is already pretty unlikely (one hundredth the probability of 5000 heads). 5200 heads is incredibly unlikely! The \sqrt{N} rule really does work!

A little fortran code to do this:

C

> GETS RATIO OF TWO BINOMIAL COEFFICIENTS (N,M1) / (N,M2)
implicit none
real*8 N,tpi,M1,M2,A,B1a,B1b,B2a,B2b
real*8 logbin1,logbin2
tpi=8.d0*datan(1.d0)
write (6,*) 'Enter N,M1,M2'
read (5,*) N,M1,M2
$\mathrm{A}=\mathrm{N} * \mathrm{dlog}(\mathrm{N})-\mathrm{N}+\mathrm{dlog}(\mathrm{tpi} * \mathrm{~N}) / 2 . \mathrm{dO}$

B1a=M1*dlog(M1)-M1+dlog(tpi*M1)/2.d0
M1=N-M1
$\mathrm{B} 1 \mathrm{~b}=\mathrm{M} 1 * \mathrm{dlog}(\mathrm{M} 1)-\mathrm{M} 1+\mathrm{dlog}(\mathrm{tpi} * \mathrm{M} 1) / 2 . \mathrm{d} 0$
logbin1=A-B1a-B1b
write (6,990) logbin1
B2a $=\mathrm{M} 2 * \mathrm{dlog}(\mathrm{M} 2)-\mathrm{M} 2+\mathrm{dlog}(\mathrm{tpi} * \mathrm{M} 2) / 2 . \mathrm{d} 0$
M2=N-M2
B2b $=$ M2 $*$ dlog (M2) - M2 + dlog (tpi $* M 2$) /2.d0
logbin2=A-B2a-B2b
write (6,991) logbin2
write $(6,992)$ logbin1-logbin2
write $(6,993)$ dexp(logbin1-logbin2)
format('log(binomial coefficient (N M1)= ',f16.4)
format('log(binomial coefficient (N M2)= ',f16.4)
format('difference = ',f16.4)
format('exp(difference) $=$ ',f16.4)
go to 10
end

Solution, Assignment 4, Problem 5, Fall 2018

The quick way to do this problem (but which is also a bit subtle) is to argue that the probability or having a boy and the probability of having a jirl are both 0.5000 . There is no way that any scheme of society can change that basic biological fact. Therefore no matter what rules for family outcomes are put in place the number of girls and boys will be equal!!

This result is at the same time both obvious and amazing.
But let's prove it. A little thought will convince you that the possible families and their probabilities are:

G	$1 / 2$
BG	$1 / 4$
BBG	$1 / 8$
BBBG	$1 / 16$

We can check the probabilities add to one, as they must, by using the formula

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

Choosing the value $x=1 / 2$

$$
\frac{1}{1-1 / 2}=1+1 / 2+1 / 4+1 / 8+1 / 16+\cdots
$$

Since the left hand side is 2 we get

$$
1=1 / 2+1 / 4+1 / 8+1 / 16+\cdots
$$

You will notice that every single family listed above has exactly one girl, so the expected (average) number of girls per family is one. But the number of boys varies. To get the expected (average) number of boys we must multiply the number of boys in each family times the probability of that family type:

$$
\langle \# \text { of boys }\rangle=(1 / 2)(0)+(1 / 4)(1)+(1 / 8)(2)+(1 / 16)(3)+\cdots
$$

This is a sum we know how to do! If you differentiate the formula for $1 /(1-x)$ above with respect to x you get

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots
$$

Multiplying by x^{2} gives

$$
\frac{x^{2}}{(1-x)^{2}}=x^{2}+2 x^{3}+3 x^{4}+4 x^{5}+\cdots
$$

But if you set $x=1 / 2$ the right hand side is the sum needed for the expected number of boys. So we conclude

$$
\langle \# \text { of boys }\rangle=\frac{(1 / 2)^{2}}{(1-(1 / 2))^{2}}=1
$$

So each familiy also has, on average, one boy. The numbers of boys and girls are equal.
If you want to have some fun, design your own society, for example families always want to have at least one girl and two boys. Compute the expected numbers of boys and girls. They will be equal. An interesting question is what the expected family size is!

6,7 * see figures, next pages, for tanh Imf and $T=\{2.0,1,3,0.7\} J$

$$
\begin{aligned}
\tanh x & =\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right) \\
& =\left(1+x+x^{2} / 2+x^{3} / 6-\left(1-x+x^{2} / 2-x^{3} / 6\right)\right) /(0) \\
& =\left(2 x+x^{3} / 3\right) /\left(2+x^{2}\right) \\
& =\left(2 x+x^{3} / 3\right) / \\
& =\left(x+x^{3} / 6\right) /\left(1+x^{2} / 2\right) \\
& =\left(x+x^{3} / 6\right)\left(1-x^{2} / 2\right)=x+x^{3} / 6-x^{3} / 2 \\
& =x-x^{3} / 3
\end{aligned}
$$

Thus $\tanh \frac{J m}{T}=\frac{J}{T} m-\frac{1}{3}\left(\frac{J m}{T}\right)^{3}+\ldots$
for small om this increases wist slope T / T.

If $J / T<1$ rises more slowly than m and only inturects at $m=0$.

If $J / T>1$ rises fasten than m hen turns oven and get $m \neq 0$ sin.

This is more dean on competa-drawn fogies

Point f exercise :
Analysis of behavior of tanh x near $x=0$ required to compute $T_{C} \ldots$

