# PHYSICS 104A, FALL 2015 <br> MATHEMATICAL PHYSICS 

Assignment Two, Due Friday, October 9, 5:00 pm.
[1.] Compute the potential $V(r, \theta)$ of a uniform disk of total charge $Q$ and radius $R$ which lies in the $x y$ plane with center at the origin.
[2.] List all the possible final locations, and their probabilities, after a random walk in one dimension with $N=8$ and probability $p=0.4$ of going one step to the left and probability $q=0.6$ of going one step to the right. Verify that, on average, the final location is $N(q-p)=$ 1.6 steps to the right of the starting point.
[3.] Show that the root mean square distance from the origin after $N$ steps of a random walk in one dimension with probability $p=1 / 2$ of going one step to the left and probability $q=1 / 2$ of going one step to the right is equal to $\sqrt{N}$. Suppose someone tells you that radiation in the ocean from the Fukushima meltdown is 100 miles from the power plant after 3 months. If the spreading were random (it's not!) how far would you expect the radiation to be after 30 months?
[4.] In understanding the behavior of spin- $1 / 2$ particles in quantum mechanics, you will encounter the $2 \times 2$ 'Pauli matrices'

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

In particular, you will need to compute their exponentials

$$
A=e^{-i t \sigma_{x}} \quad B=e^{-i t \sigma_{y}} \quad C=e^{-i t \sigma_{z}}
$$

Using the definition

$$
e^{M}=1+M+\frac{1}{2} M^{2}+\frac{1}{6} M^{3}+\cdots
$$

compute $A, B$ and $C$.
[5.] Compute the inverses of the Pauli matrices.
[6.] The 'commutator' of two matrices $A$ and $B$ is symbolized by $[A, B]$ and is defined by

$$
[A, B]=A B-B A
$$

Show that the 'spin' matrices

$$
S_{x}=\frac{\hbar}{2} \sigma_{x} \quad S_{y}=\frac{\hbar}{2} \sigma_{y} \quad S_{z}=\frac{\hbar}{2} \sigma_{z}
$$

obey

$$
\left[S_{x}, S_{y}\right]=i \hbar S_{z} \quad\left[S_{y}, S_{z}\right]=i \hbar S_{x} \quad\left[S_{z}, S_{x}\right]=i \hbar S_{y}
$$

