PHYSICS 104A, FALL 2018
 MATHEMATICAL PHYSICS

Assignment One, Due Friday, October 5, 5:00 pm.
[1.] You can decompose a real number into the sum of two other real numbers in many possible ways: $7=2+5$ but also $7=4+3$, for example. Prove that the decomposition of a complex number into real and imaginary parts is unique.
[2.] We solved the damped harmonic oscillator in class. Do the same to find the charge $Q(t)$ on the capacitor plate in an LRC circuit. How do you incorporate the initial conditions $Q(t=0)$ and $I(t=0)$ into your general solution?
[3.] Suppose you had an anharmonic spring $F=-k x-a x^{3}$. What happens if you try a solution $x(t)=e^{i \omega t}$ in the equation of motion? Is there any analytic method which will solve this problem?
[4.] Compute $(0.6+0.8 i)^{90}$.
[5.] Consider a complex number z as a vector. Describe in words what happens to z if you multiply it by $\rho e^{i \phi}$. (Here ρ and ϕ are real numbers.) How does the length of $\rho e^{i \phi} z$ compare to that of z ? What about its direction?
[6.] The ground state energy of a one dimensional metallic chain with N atoms is given by

$$
E_{0}=\sum_{j=-N / 4}^{N / 4}-2 t \cos \frac{2 \pi j}{N}
$$

Here the parameter t is the 'hopping integral' and is determined by the overlap of wavefunctions on adjacent atoms. Depending on the material, t might have a value of, for example, $t=2.5 \mathrm{eV}$ for polyacetylene [1]. Find a closed-form expression for this sum. Can you discover what it converges to in the "thermodynamic limit" $N \rightarrow \infty$?
[7.] In class we discussed the solutions of $z^{4}=1$ being $z=1, i,-1, i$. Find (a) the solutions to $z^{4}=1+i$; and (b) the solutions to $z^{4}-(3+i) z^{2}+2+i=0$.
[8.] Compute $\ln (3+4 i)$.
[1] The classic paper on polyacetylene, pointing out the existence of solitons (!), is here: http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.42.1698. We will derive the key results of this paper when we go through our discussion of matrices and eigenvalues.

