PHYSICS 104A, FALL 2015
 MATHEMATICAL PHYSICS

Assignment One, Due Friday, October 2, 5:00 pm.
[1.] We solved the damped harmonic oscillator in class. Do the same to find the charge $Q(t)$ on the capacitor plate in an LRC circuit. How do you incorporate the initial conditions $Q(t=0)$ and $I(t=0)$ into your general solution?
[2.] Suppose you had an anharmonic spring $F=-k x-a x^{3}$. What happens if you try a solution $x(t)=e^{i \omega t}$ in the equation of motion? Is there any analytic method which will solve this problem? (We will see how to deal with anharmonicities easily in Physics 102 !)
[3.] Compute $(0.6+0.8 i)^{90}$.
[4.] The ground state energy of a one dimensional metallic chain with N atoms is given by

$$
E_{0}=\sum_{j=-N / 4}^{N / 4}-2 t \cos \frac{2 \pi j}{N}
$$

Here the parameter t is the 'hopping integral' and is determined by the overlap of wavefunctions on adjacent atoms. Depending on the material, t might have a value of, for example, $t=2.5 \mathrm{eV}$ for polyacetylene [1]. Find a closed-form expression for this sum. Can you discover what it converges to in the "thermodynamic limit" $N \rightarrow \infty$?

These next three problems illustrate how power series expansions arise in some important situations. You have probably done [5.] before in Physics 9D. Meanwhile, [6.] and [7] are key steps in the analysis of magnetic ordering in solids.
[5.] Compare the relativistic energy $E=m c^{2}\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ to the classical energy $\frac{1}{2} m v^{2}$.
[6.] When you do "mean field theory" to determine the critical temperature T_{c} at which a material becomes magnetic, you need to solve the transcendental equation, $m=\tanh (\mathrm{Jm} / T)$, Here m is the magnetization and J is called the 'exchange parameter'. Draw pictures of $\tanh (J m / T)$ for $T=2.0 J, 1.3 J$, and 0.7 J . What can you say about these curves intersecting a line of slope one, that is, the nature of solutions to $m=\tanh (J m / T)$? Use a series expansion of \tanh to prove that $m=0$ is the only solution for $T>J$, but that there are 'nonzero magnetization' solutions with $m \neq 0$ when $T<J$, and that, therefore, the critical temperature $T_{c}=J$.
[7.] (Extra credit) Show that $m(T) \sim\left(T-T_{c}\right)^{\frac{1}{2}}$ for T just a bit below T_{c}. The power $1 / 2$ is the "mean field critical exponent" of the magnetic phase transition.
[1] The classic paper on polyacetylene, pointing out the existence of solitons (!), is here: http://journals.aps.org/prl/pdf/10.1103/PhysRevLett. 42.1698 We will derive the key results of this paper when we go through our discussion of matrices and eigenvalues.

