Fourier Series
In a finite dimensional vector space it is convinient to choose basis $\vec{a}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ and represent rectors by their components v_{1}, \ldots, v_{n} in that basis:
(1) $\vec{v}=v_{1} \vec{e}_{1}+v_{2} \vec{e}_{2}+\ldots+v_{n} \vec{e}_{n}=\sum_{k=1}^{n} v_{k} \vec{e}_{k}$

One often chooses an orthogonal basis:
(1) $\left(\overrightarrow{e_{j}}, \overrightarrow{e_{k}}\right)=0$ if $j \neq k$

Then, multiplying both sides of (1) by \vec{e}_{k},
(2) $\quad \underbrace{v_{k}}_{\text {components of } \vec{v}}=\frac{\left(\vec{v}, \overrightarrow{e_{k}}\right)}{\left(\overrightarrow{e_{k}}, \overrightarrow{e_{k}}\right)}\left\{\overrightarrow{e_{k}}\right\}_{k=1}^{n}$ basis

The basic idea behind Fourier series is that functions, which live in an infinite dimensional space, can be represented by Fourier coefficients that play a role of "rector components" in this abstract infinite dim. space.

FS-2
Let us define a scalar product of two functions $f(x)$ and $g(x)$ on $[a, b]$
in the usual way:
(3)

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

> We will use this 3 def. even when f and g are not continuous \{on $[a ; b]$, so that
Similarly to (1^{\prime}) we consider an $\left\{\begin{array}{l}\text { the integral is } \\ \text { improper }\end{array}\right.$ orthogonal system of continuous improper
functions $\left\{e_{k}(x)\right\}_{k=1}^{\infty} \equiv\left\{\vec{l}_{1}(x), \vec{e}_{2}(x), \ldots\right\}$
on $[a, b]_{b}$ (orthogonal in a sense of
(3), $r_{1} e_{1}, \quad \int_{a}^{b} e_{1}(x) e_{2}(x) d x=0$ and so on).

Then we con at least hope that with certain not too restrictive conditions
on $f(x)$, which we Ill discuss later, we can write (for every $f(x)$ satisfying these conditions) where, "represented by"

$$
\underbrace{\alpha_{k}}=\frac{\left(f(x), e_{k}(x)\right)}{\left(e_{k}(x), e_{k}(x)\right)} ; k \in \mathbb{N}
$$

Fourier coefficients

FSH
There are many sets of orthogonal functions $\left\{l_{k}(x)\right\}_{k=1}^{\infty}$, such as spherical harmonics, hermite polynomials, Bessel functions, etc. Also, later in the course you will learn about Legendre polynomials that are orthogonal in $[-1,1]$. Here we consider a trigonometric set of $2 L$-periodic functions orthogonal in $[-L, L]$:
(6)

$$
l_{p}(x)=\frac{1}{2} ; e_{1}(x)=\sin \frac{\pi x}{L} ; e_{2}(x)=\cos \frac{\pi x}{L} ;
$$

$\ldots e_{k}(x)=\sin \left(\frac{k \pi x}{L}\right) ; e_{k+1}(x)=\cos \left(\frac{k \pi x}{L}\right), \ldots$
We daim (and leave it to mathematicians to prove) that every suitably well-behaved (ie. Sat isfying Dirichlet conditions) 2L-periedic function con be represented by Fourier series:
(7) $f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{n} \operatorname{Cos}\left(\frac{k \pi x}{L}\right)+b_{n} \operatorname{Sin}\left(\frac{k \pi x}{L}\right)\right]$, where a_{n}, b_{n} are Fourier coefficients.
We've isolated a_{0} for reasons that will become evident later.
!!! Skip this page to avoid mathematical
Dirichlet conditions

1) $f(x)$ is single valued with a finite \# of discontinuities in $[L ;-L]$.
2) $f(x)$ has finite \# of extrema in $[-L, L]$
3) $\int_{-L}|f(x)| d x$ nus converge

Most of functions we are dealing with in physics satisfy these conditions. Mathematicians came up with diabolic examples of functions that do not satisfy DC's, but those are rarely, it ever, used in physical applications.
Before we give a proof of orthogonality of the trigonometric set (6) and how to find Fourier coefficients, let's make some remarcs:
i) Notice that $f(x)$ are very special functions: 2L-periodic and satisfying DC's given above. In particular, $f(x)$ cen hews a finite \# of discontinuities. Thus Fourier series are different from Taylor series you learned earlier, they can describe functions that are not everywhere continuous and lo differentiable.
ii) We will not prove this, but the trigonometric set of functions in $[-L, L]$ is complete $*$ in a sense that every function can be expressed as a linear combination of these iii) We use a symbol \sim rather them $=$ functs. in (7), because Fourier series (FS) can in geñeral diverge or converge not to $f(x)$. We will discuss convergence of FS later when we give some examples.

Properties of periodic functions
Consider a $2 L$-periodic function $f(x)$:

$$
f(x+2 L)=f(x), \quad \forall x \in \mathbb{R}
$$

Property (1) The integral $\int_{\alpha}^{d+2 L} f(x) d x$ doesn't depend on d : these two are identical

One often chooses $d=-L$

Hence, we can always consider $\int f(x) d x$.
Property (2) $\int_{-L}^{L} \sin \left(\frac{k \pi x}{L}\right) d x=\int_{-L}^{L} \operatorname{Cos}\left(\frac{k \pi x}{L}\right) d x=0 ; k \in \mathbb{Z}$
Proof: $\int_{-L}^{L} \sin \left(\frac{k \pi x}{L}\right) d x=-\left.\frac{L}{k \pi} \cos \left(\frac{k \pi x}{L}\right)\right|_{-L} ^{L}=$
$=-\frac{L}{k \pi}(\operatorname{Cos}(k \pi)-\operatorname{Cos}(-k \pi))=\{\operatorname{Cos} \alpha /$ seven $\}$
$=-\frac{L}{k \pi}(\operatorname{Cos}(k \pi)-\operatorname{Cos}(k \pi))=0$
$\int_{-L} \cos \left(\frac{k \pi x}{L}\right) d x$ is done analogously.

Fs-6
Now, let's prove that the trigonometric set $\frac{1}{2}, \sin \frac{\pi x}{L}, \operatorname{Cos} \frac{\pi x}{L}, \ldots, \sin \frac{k \pi x}{L}, \operatorname{Cos} \frac{k \pi x}{L}, \ldots$ is orthogonal in $[-L, L]$
Start with $\sin \left(\frac{\pi k x}{L}\right)$ and $\cos \left(\frac{\pi n x}{L}\right), n \neq k$
$\int_{-L}^{L} \sin \frac{\pi k x}{L} \cos \frac{\pi n x}{L} d x=\frac{1}{2} \int_{-L}^{L}\left[\sin \frac{\pi(n+k) x}{L}-\sin \frac{\pi(n-k) x}{L}\right] d x$
$=0$, because of property (2) on $\mathrm{FS}-5_{0}$
Analogeusly, $\int_{-L}^{L} \sin \frac{\pi k x}{L} \cos \frac{\pi n x}{L} d x=\frac{1}{2} \int_{-L}^{L}\left[\sin \frac{2 \pi n x}{L}-\sin 0\right] d x$
$=0$. by the same property (2).
Also, $\int_{-L}^{L} \sin \frac{\pi k x}{L} \sin \frac{\pi n x}{L} d x=\int^{L} \operatorname{Cos} \frac{\pi k x}{L} \operatorname{Cos} \frac{\pi n x}{L} d x=0$, but not for $n=k$!
Finally $\int_{-L}^{L} \frac{1}{2} \cdot \sin \frac{\pi n x}{L} d x=\int_{-L}^{L} \frac{1}{2} \cdot \cos \frac{\pi n x}{L} d x=0$, by the same property (2).

$$
n=k \text { case: } \quad \cos ^{2} x=\frac{1}{2}(\cos 2 x+1)
$$

$$
\begin{aligned}
\int_{-L}^{\operatorname{Cos} \frac{\pi n x}{L} \operatorname{Cos} \frac{\pi n x}{L} d x}=\frac{1}{2} \underbrace{\int_{-L}^{L} \operatorname{Cos} \frac{2 \pi n x}{L} d x}_{=0}+\frac{1}{2} \int_{-L}^{L} d x & =\frac{1}{2} 2 L \\
A_{\text {by property }}^{L}(2) & =L
\end{aligned}
$$

Analogously, $\int_{-L}^{L} \sin \frac{\pi n x}{L} \sin \frac{\pi n x}{L} d x=L$

FS-7
(1) Thus, for suitably well-behaved $2 L$-periodic functions
(7) $f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \operatorname{Cos} \frac{k \pi x}{L}+b_{k} \operatorname{Sin} \frac{k \pi x}{L}\right)$

How do we find a_{n} and b_{n} ?
We could, of course, use (5) and simplify ourwork. But let's do it explicitly. The idea is to multiply both sides by obs $\left(\frac{m \pi x}{L}\right)$, integrate over a period and use orthogonality of the trigonometric set.

$$
\left.\begin{array}{rl}
& \int_{-L}^{L} f(x) \operatorname{Cos} \frac{m \pi x}{L} d x=\int_{-L}^{L} \operatorname{Cos} \frac{m \pi x}{L}\left\{\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \operatorname{Cos} \frac{k n x}{L}+b_{k} \sin \frac{k n}{L} d_{x}\right.
\end{array}\right\}
$$

Now you see the reason for $\frac{1}{2}$ in front of as in (7). With it the formula for a_{n} works for one k, including 0 . Analogously,

$$
\begin{aligned}
& \int_{-L}^{L} f(x) \sin ^{\frac{m \pi x}{L}} d x=\int_{-L}^{L} \sin \frac{m \pi x}{L}\left\{\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \frac{k \pi x}{L}+b_{k} \sin \frac{k \pi x}{L}\right\} d x \\
& =b_{k} \int_{-L}^{L} \sin ^{2}\left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} b_{m} \int_{-L}^{L} d x-\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{2 m \pi x}{L}\right) d x
\end{aligned}
$$

(9) $b_{K}=\frac{1}{L} \int_{-L} f(x) \sin \frac{k \pi x}{L} d x$

FS-8 Example 1

$$
2 L=2 \pi
$$

i $a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=0 \quad f(x)$ is an odd function!

$$
\begin{aligned}
& \frac{1}{\text { In }}=\int_{i}^{\frac{1}{d}} b_{k}=\frac{1}{\pi} \int_{-L}^{L} f(x) \sin k x d x=\frac{1}{\pi}\left[\int_{-\pi}^{0}(-1) \sin k x d x+\int_{0}^{\pi} 1 \cdot \operatorname{sinkxdx}\right]
\end{aligned}
$$

We see that at points where $f(x)$ is continuous FS converges to $f(x)$, but at discontinuities there are large oscillations (that will not go onvay if you take more and more terms in FS of $f(x)$), known as
Gibbs phenomenon.

FS-q
At discontinuities FS converges to $\frac{f\left(x_{1}+0\right)+f\left(x_{0}-0\right)}{2}$, where $f\left(x_{0}+0\right)$ and $f\left(x_{0}-0\right)$ are one-sided limits of $f(x)$ at x_{0}.
In our example, for $x_{0}=0, f(0+0)=+1$, $f(0-0)=-1$ and FS converges to $\frac{1+(-1)}{2}=0$.
Example $2 \quad f(x)=0,-3 \leqslant x \leqslant-1,1 \leqslant x \leqslant 3, \ldots$

$$
\text { Period } \equiv 2 L=4 ; L=2
$$

$\begin{aligned} & \text { do this }_{\text {separately }}^{\text {s. }} \\ & \text { from other }\end{aligned} a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{1}(1-x) d x=\frac{1}{2}$ $a_{k}^{\prime} s \quad$ All $b_{k}=0 \quad(f(x)$ is even, so no sines $)$ For $k \neq 0: \quad a_{k}=\frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{k x \pi}{2} d x=$

$$
=\frac{2}{2} \int_{0}^{2} f(x) \cos \frac{k x \bar{\pi}}{2} d x=\int_{0}^{1}(1-x)^{2} \cos \frac{k x \bar{\pi}}{2} d x=
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { § } \\
\text { s } \\
\text { § } \\
\text { ङ } \\
+ \\
+\quad 1-x)\left.\frac{2}{\pi k} \sin \frac{k \pi x}{2}\right|_{0} ^{1}+\frac{2}{\pi k} \int_{0}^{1} \sin \frac{\pi k x}{2} d x= \\
+\left(\frac{2}{\pi k}\right)^{2}\left(-\left.\cos \frac{k \pi x}{2}\right|_{0} ^{1}\right)=\left(\frac{2}{\pi k}\right)^{2}\left(1-\cos \frac{k \pi}{2}\right)
\end{array} \\
& \sum_{i}^{\infty} \text { is }^{\circ} f(x) \sim \frac{1}{4}+\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\left(1-\operatorname{Cos} \frac{k \pi}{2}\right)}{k^{2}} \operatorname{Cos} \frac{k \pi x}{2} \text {. }
\end{aligned}
$$

ES- 10
In general, FS for even and odd
Even function: $f(x)=f(-x)$
(10) $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$
$\frac{\text { Odd function: }}{L_{\int} f(x) d x}: f(x)=-f(-x)$
(11) $\int_{-L}^{L} f(x) d x=0$

Hence if $f(x)$ is even

$$
b_{k}=\frac{1}{L} \int_{-L} f(x) \sin \overline{\frac{k \pi x}{L} d x}=0, \text { by }(11)
$$

(12)

$$
a_{k}=\frac{1}{L} \int_{-L}^{L} f(x) \operatorname{Cos} \frac{k \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \operatorname{Cos} \frac{k \pi x}{L} d x, b y(10)
$$

If $f(x)$ is odd

$$
a_{k}=\frac{1}{L} \int_{-L}^{L} \overline{f(x)} \operatorname{Cog}_{\text {odd }} \frac{k \pi x}{L} d x=0, b y(11)
$$

(13)

$$
b_{k}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{k \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x \text {, }
$$

Non- periodic functions
If we wish to find the FS of a non-periodic function (Only within a fixed range), we can continue this function outside the range to make it periodic. This can be done in different ways. (see example below). The FS found this way will correctly represent the function in the range (except, maybe, at the endpoints).
Exangole $f(x)=x^{2} ; 0<x \leqslant 2$

Com continue this function to make it even or odd (or neither!)
Even:

$$
\begin{gathered}
f(x+4)=f(x) \\
2 L=4
\end{gathered}
$$

Odd:

$$
\begin{gathered}
f(x+4)=f(x) \\
2 L=4
\end{gathered}
$$

Has discontinuities! FS of this will converge to $\frac{4-4}{2}=0$ at visconti-

FT- 12

Niether even, nor odd

$$
\begin{gathered}
f(x+2)=f(x) \\
2 L=2
\end{gathered}
$$

Tare the even case
Using
(12)

$$
\begin{aligned}
& a_{0}=\frac{2}{2} \int_{0}^{2} x^{2} d x=\left.\frac{x^{3}}{2}\right|_{0} ^{2}=\frac{8}{3} . \\
& \left.\hbar \neq 0: a k=\frac{2}{2} \int_{0}^{2} x^{2} \operatorname{Cos} \frac{k \pi x}{2} d x=\xi \text { taking by parts }\right\}= \\
& =\frac{16}{\pi^{2} k^{2}} \operatorname{Cos} k \pi=\frac{16}{\pi^{2} k^{2}}(-1)^{k} \quad \text { twice ... }
\end{aligned}
$$

Hence $x^{2}=\frac{4}{3}+\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k} \operatorname{Cos}\left(\frac{k \pi x}{2}\right)}{k^{2}} ; 0<x \leq 2$

Non-periodic well-behaved functions
only in this in general can be represented by

Fourier integrals

FS-13 Complex form of FS
Let's simplify things and take $L=\pi$ case

$$
\begin{aligned}
& f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x \\
& \operatorname{Cos} k x=\frac{1}{2}\left(e^{i k x}+e^{-i k x}\right) ; \sin k x=\frac{1}{2 i}\left(e^{i k x}-e^{-i k x}\right) \\
& f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty} \frac{a_{k}}{2}\left(e^{i k x}+e^{-i k x}\right)+\frac{b_{k}}{2 i}\left(e^{+i k x}-e^{-i k x}\right) \\
& =\frac{a_{0}}{2}+\sum_{k=1}^{\infty} \frac{a_{k}-i b_{k}}{2} e_{c_{k}^{i k x}}^{\underbrace{}_{k}} \underbrace{\frac{a_{k}+i b_{k}}{2}}_{c_{-k}} e^{-i k x} \quad k=0,1, \ldots
\end{aligned}
$$

Notice that $C_{k}^{*}=C_{-k}$

$$
C_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)(\cos k x-i \sin k x) d x=
$$

$$
\begin{aligned}
& \text { this } \rightarrow(\alpha n-\pi \\
& \text { comes from } \\
& \text { ane }-\frac{1}{2}
\end{aligned} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
$$

(2)

$$
c_{-k}=c_{k}^{*}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i k x} d x
$$

Thus $f(x) \sim \sum_{k=-\infty}^{+\infty} C_{k} e^{i k x} ; c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x$
In general, for $2<$-periodic function

$$
f(x) \sim \sum_{k=-\infty}^{+\infty} c_{k} e^{i k x} ; \quad c_{k}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i k x} d x
$$

