Assignment Three

Due Wednesday, October 30, 7;00 pm.
[1.] Write a code to iterate $x_{n+1}=1-\mu x_{n}^{2}$. Print it and hand it in.
[2a.] Run your code for $\mu=0.5$ and the three initial values $x_{0}=0.25,0.50,0.75$. What happens?
[2b.] Compute the fixed point of the map analytically and show your code is doing the right thing.
[3a.] Run your code for $\mu=1.1$ and the three initial values $x_{0}=0.25,0.50,0.75$. What happens?
[3b.] Compute the fixed points of the twice-iterated map analytically and show your code is doing the right thing.
[4.] Run your code for $\mu=1.3$ and the initial value $x_{0}=0.25$. What happens?
[5.] Run your code for $\mu=1.5$ and the initial value $x_{0}=0.25$. What happens?
[6.] Make plots of $x(n)$ vs n for $x_{0}=0.25$ and the four μ values above.
[7.] Extra Credit! Do a 'stability analysis' of the fixed point and show that it goes unstable at $\mu=0.75$. I can discuss this in more detail with you, but the idea is to start x_{0} at a value slightly shifted from the fixed point and decide whether the dviation increases or decreases after an interation.

