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Boulder 2003 Summer School

Lecture II- World Line Quantum Monte Carlo

A. Introduction

In this lecture, I will describe the “World–Line” Quantum Monte Carlo algorithm for

the Heisenberg and Hubbard models. This method employs path integrals to map the

partition function of a quantum mechanical Hamiltonian onto a classical problem in one

higher dimension. As we shall see, the “length” of this new “imaginary time” dimension

is given by the inverse temperature β = 1/T . The classical degrees of freedom are the

eigenvalues of the original quantum operators as a function of space and imaginary time.

One of the attractive features of the approach is that the world–lines trace variables which

are associated with the operators in the original quantum Hamiltonian, and therefore offer

an intuitive real space picture of the correlations in the system. In contrast, the determinant

Monte Carlo algorithm, which is the focus of lecture III, also begins with a mapping of a

quantum problem onto a classical problem in one higher dimension, but the resulting classical

degrees of freedom are less directly related to the original operators in the Hamiltonian.

The background reading includes a chapter which has a description of the world line

algorithm for a single quantum oscillator and for the one dimensional Ising model in a

transverse field. These are among the most simple applications of the world-line method.

Here, after introducing the general idea of the technique, we will jump directly to the more

difficult problem of the Heisenberg Hamiltonian, and its generalizations. Students desiring

additional simple examples should examine the background reading.

Before beginning, I should acknowledge that world-line QMC has seen enormous devel-

opments over the last decade. ‘Loop’ algorithms have helped solve the problem of long au-

tocorrelation times by using cleverly constructed non-local monte carlo moves. ‘Continuous

time’ algorithms remove errors associated with the finite inverse temperature discretization

mesh. ‘Worm’ algorithms have been proposed to measure the off-diagonal Greens function.

Finally, the ‘Stochastic Series Expansion’ appears to be especially effective (partly because

it incorporates ideas from some of these other approaches). It is beyond the scope of this

lecture to describe these developments. However, the student intending serious work in

world-line QMC would be well advised to learn them.

B. The General Idea of World-Line QMC

The starting point of QMC is the partition function

Z = Tr e−βH . (1)

Because H contains terms which do not commute, this exponential is difficult to work with.
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The world-line approach begins by dividing H into pieces H = H1 + H2 + H3 + . . . such

that, in an appropriate basis, the matrix elements of the exponential of each individual Hα

can be evaluated. To isolate the Hα from each other, one discretizes β into small increments

β = L∆τ and approximates,

Z = Tr e−βH = Tr[e−∆τH ]L ≈ Tr[e−∆τH1e−∆τH2e−∆τH3 . . .]L. (2)

The errors associated with this ‘Suzuki-Trotter’ approximation can be systematically elimi-

nated by increasing L (reducing ∆τ). Complete sets of states in which the exponentials of

Hα are calculable are introduced in between all the exponentials, and the matrix elements

evaluated. The partition function Z is thereby reduced to the calculation of the sum over all

these complete sets of states of the product of the numbers which result from the computa-

tion of the matrix elements. Finally, standard classical monte carlo methods are employed to

evaluate the sum. A lightning review of classical monte carlo is contained in the appendix.

C. World Line QMC for the Spin–1/2 XXZ Hamiltonian

Because it makes the discussion no more complex, we consider a generalization of the

Heisenberg model, the quantum XXZ Hamiltonian, which has richer physics. We will restrict

ourselves to one dimension, because that simplifies our discussion considerably.

H = J
∑

i

[(Sx,iSx,i+1 + Sy,iSy,i+1) + λSz,iSz,i+1]−Bz

∑

i

Sz,i

= J
∑

i

[
1

2
(S+,iS−,i+1 + S−,iS+,i+1) + λSz,iSz,i+1]−Bz

∑

i

Sz,i (3)

As before, Sx,i, Sy,i and Sz,i are quantum spin–1/2 operators at each site i, and S+,i, S−,i

are the associated raising and lowering operators. Bz is an external field in the z direction.

When |λ| > 1 this model is in the Ising universality class and exhibits a finite temperature

phase transition in zero field to a state with long range order, in dimensions greater than

d = 1. For |λ| < 1, the model is in the XY universality class, with a finite temperature

phase transition in zero field to a state with long range order in dimensions greater than

d = 2. A Kosterlitz–Thouless phase transition to a state with spin correlations which decay

with a power–law in d = 2 occurs at finite T . The isotropic Heisenberg point λ = 1 has long

range order in d = 2 only at T = 0.

QMC methods played a crucial role in proving that long range order exists in the ground

state of the 2-d spin-1/2 Heisenberg model. The spin–1/2 XXZ Hamiltonian is isomorphic to

a lattice system of hard–core bosons with a near neighbor interaction. Recent experiments

on “Mott” transitions in optically trapped atoms has led to quite a bit of recent simulation

work on interacting Bose systems.

A convenient choice of Hα in the case of the XXZ Hamiltonian is the “checkerboard”

decomposition, illustrated in Fig. 1,

H1 = J
∑

i odd

[
1

2
(S+,iS−,i+1 + S−,iS+,i+1) + λSz,iSz,i+1]−

1

2
Bz

∑

i

Sz,i
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H2 = J
∑

i even

[
1

2
(S+,iS−,i+1 + S−,iS+,i+1) + λSz,iSz,i+1]−

1

2
Bz

∑

i

Sz,i (4)

FIG. 1: The division of the one–dimensional XXZ Hamiltonian into H1 and H2 is illustrated

for an N = 8 site, 1-d lattice. H1 consists of independent two–site pieces linking pairs

of sites (1, 2)(3, 4)(5, 6) . . . H2 consists of independent two–site pieces linking pairs of sites

(2, 3)(4, 5)(6, 7) . . . Periodic boundary conditions in the spatial direction connect the last site, i = 8

to the first, i = 1.

To see why this is a useful division, introduce complete sets of states which are eigenstates

of the z component of spin at each imaginary time slice. The terms in Hα involving the

z components of spin act on these states and are immediately converted to numbers. The

partition function becomes,

Z =
∑

{Sz,i,l}

exp[−λJ∆τ
∑

i,l

Sz,i,lSz,i+1,l]

〈 Sz,1,1Sz,2,1 . . . Sz,N,1|e
−∆τHex,1 |Sz,1,2Sz,2,2 . . . Sz,N,2〉

〈 Sz,1,2Sz,2,2 . . . Sz,N,2|e
−∆τHex,2 |Sz,1,3Sz,2,3 . . . Sz,N,3〉

〈 Sz,1,2Sz,2,2 . . . Sz,N,2|e
−∆τHex,1 |Sz,1,3Sz,2,3 . . . Sz,N,3〉

. . .

〈 Sz,1,2LSz,2,2L . . . Sz,N,2L|e
−∆τHex,2 |Sz,1,1Sz,2,1 . . . Sz,N,1〉, (5)

with the abbreviation Hex,α for the exchange terms in the Hamiltonian Hα. How come the

z components of spin Sz,i,l have two indices now? The first index is the usual spatial site

i = 1, 2, . . . N . The second index is the ’imaginary time’ l = 1, 2, . . . 2L which labels the

complete state inserted at the particular point l in the string of exponentials. The appearance

of this extra index l is the technical realization of the statement that a d dimensional quantum

problem is mapped into a d + 1 dimensional classical one. In other words, the partition

function is a sum over a set of variables {Sz,i,l} which lives in 2-d (if our original quantum

problem was in 1-d). Note that we have to introduce 2L time slices in this checkerboard

decomposition in one dimension. The factor L comes from the discretization of β, while the

factor of 2 is a consequence of the number of pieces into which H was divided.

To see that the matrix elements are calculable, the crucial observation is that H1 and H2
consist of independent two–site pieces. Thus the matrix elements factorize,

〈Sz,1,lSz,2,l . . . Sz,N,l|e
−∆τHex,α |Sz,1,l+1Sz,2,l+1 . . . Sz,N,l+1〉

=
∏

i odd

〈Sz,i,lSz,i+1,l|e
−∆τ 1

2
J(S+,iS−,i+1+S−,iS+,i+1)|Sz,i,l+1Sz,i+1,l+1〉, (6)
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and one must only evaluate the corresponding two site matrix elements. Using the same

notation as in lecture one, the results are,

〈+ + |e−∆τ 1

2
(S+,1S−,2+S−,1S+,2)| + + 〉 = 1

〈− − |e−∆τ 1

2
(S+,1S−,2+S−,1S+,2)| − − 〉 = 1,

〈+ − |e−∆τ 1

2
(S+,1S−,2+S−,1S+,2)| + −〉 = cosh(

J

2
∆τ),

〈− + |e−∆τ 1

2
(S+,1S−,2+S−,1S+,2)| − + 〉 = cosh(

J

2
∆τ),

〈+ − |e−∆τ 1

2
(S+,1S−,2+S−,1S+,2)| − + 〉 = −sinh(

J

2
∆τ),

〈− + |e−∆τ 1

2
(S+,1S−,2+S−,1S+,2)| + −〉 = −sinh(

J

2
∆τ), (7)

with all other matrix elements zero. The only non–zero matrix elements are those between

states which have the same Sz,tot = Sz,1 + Sz,2 in the two time slices. This is a consequence

of the fact that [S+,1S−,2 + S−1,S+,2, Sz,1 + Sz,2] = 0.

Let’s summarize. The partition function of the quantum XXZ model in 1-d has been

expressed as a sum over classical degrees of freedom, {Sz,i,l} on a 2-d space time lattice,

Z =
∑

{Sz,i,l}

W [{Sz,i,l}] (8)

The summand W consists of two pieces: an exponential of products of pairs of Sz,i,l on

adjacent spatial sites i for each of the imaginary time slices l, and a product of matrix

elements.

Since the variables {Sz,i,l} are just real numbers, as are the weights W [{Sz,i,l}], we may

follow the usual (classical) monte carlo procedure for generating configurations of {Sz,i,l}.

This consists of suggesting changes to {S ′z,i,l} which are then accepted with probability,

p = min[1,W ({S ′z,i,l}/W ({Sz,i,l})). This ‘Metropolis algorithm’ yields configurations {Sz,i,l}

with probability proportional to W ({Sz,i,l}). (See appendix.)

The off–diagonal matrix elements are negative if the XY coupling is antiferromagnetic,

J > 0. This is an instance of the “sign problem” in quantum monte carlo and reflects

the conceptual difficulty encountered if the weights W ({Sz,i,l}) can be negative. If the

XY coupling is ferromagnetic, J < 0, then there is no sign problem. In the case of a

near–neighbor antiferromagnetic coupling on a bipartite lattice, we can eliminate the sign

problem by rotating the spin operators on one sublattice. This changes the sign of J (but

not the sign of the λJ term), yet does not alter the physics since it simply corresponds to a

different choice of direction of the local axes of spin quantization.

If the signs cannot be eliminated by such a rotation or some other means, then the world–

line method will not work for the Hamiltonian in question. Examples are antiferromagnetic

models on non–bipartite lattices like the triangular lattice, or models with longer range

antiferromagnetic coupling, such as the two–dimensional, square lattice, “J1–J2” Heisenberg

model which has a next near–neighbor antiferromagnetic coupling J2 across the diagonal of
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a square. This sign problem is the most fundamental limitation to quantum simulation

techniques. It arises not only in the world–line algorithm, but also in the determinant

approach, in ground state projection methods, etc.

It is useful to picture the structure of the checkerboard break–up by drawing the (1+1)–

dimensional array of spins and shading the squares corresponding to bonds across which a

piece of the Hamiltonian acts. ThusH1 connects spatial sites (1, 2), (3, 4), . . .(N−1, N) from

time slice l to l+1 where l is odd, and likewiseH2 connects spatial sites (2, 3), (4, 5), . . .(N, 1)

from time slice l to l+1 where l is even. (The last pair (N, 1) is present if we have periodic

boundary conditions which connect the first and last sites in our Hamiltonian.) The resulting

“checkerboard lattice” is illustrated in Fig. 2.

FIG. 2: The “checkerboard” which arises by shading those plaquettes of the space–imaginary time

lattice across which time evolution operators act. In the figure, the number of spatial sites N = 8

and number of imaginary time slices 2L = 6. Periodic boundary conditions connect sites and slices

at the edges of the lattice, illustrated here by the identification of the boundaries x = 0 and τ = 0

with x = 8 and τ = 6 respectively. World lines can traverse only diagonals of shaded squares. A

typical monte carlo move which pulls a world–line across an unshaded square is shown.

That the matrix elements vanish unless the sum of the z components of spin at the top

and bottom of a shaded square are equal puts constraints on the terms in the sum over Sz,i,l

which contribute to the partition function. These conservation laws can best be visualized

as follows: Draw lines connecting the sites on which the z component of spin is positive.

Since the number of up spin sites is conserved from time slice to time slice, the result is a

set of continuous “world–lines”. The world–lines can cross only the shaded squares of the

checkerboard lattice, since it is on these that the Hamiltonian acts. The periodic boundary

conditions inherent in the trace require that these world–lines also connect continuously from

the last time slice, l = 2L, to the first, l = 1. This same construction occurs in the monte

carlo path integral formulation for problems of interacting bosons and fermions where the

conservation law is particle number, and the name “world–line” is especially appropriate.
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We need to formulate monte carlo moves which respect the restricted class of spin config-

urations which is allowed. A move which flips a single spin Sz,i,l → −Sz,i,l would always give

rise to zero matrix elements if the original configuration had non–zero Boltzmann weight.

Put differently, it would “break” a world–line. It is easy to see (Fig. 2) that moves which

“pull” a world–line across an unshaded square of the checkerboard lattice preserve all the

local conservation laws and result in configurations of nonzero weight, assuming the original

configuration was allowed. Four spin variables are changed in such an update, and the values

of the matrix elements on four shaded plaquettes are modified. This means that the decision

making process is local, and updating all the degrees of freedom on the lattice scales linearly

with the lattice size. An acceptance–rejection step using the Metropolis algorithm in which

the move is accepted with probability max(1,R), where R is the ratio of the product of

new to old values of the matrix elements on the four modified plaquettes, along with the

exponentials from the Sz operators.

It is useful explicitly to write down W ({Sz,i,l}), W ({S
′
z,i,l}), and R for the two configura-

tions of Fig. 2. There are 24 matrix elements, one for each of the shaded plaquettes, and a

the term from the Sz operators obtained by counting up the pairs of parallel spins on each

time slice. Before pulling the line,

W ({Sz,i,l}) = [sinh(
J

2
∆τ)]6 [cosh(

J

2
∆τ)]18 e−8λJ∆τe−12B∆τ (9)

Meanwhile,

W ({S ′z,i,l}) = [sinh(
J

2
∆τ)]4 [cosh(

J

2
∆τ)]20 e−12B∆τ (10)

The ratio of these weights is

R = [coth(
J

2
∆τ)]2e+8λJ∆τ (11)

It is favorable to perform the move as far as the matrix elements of Hex are concerned, since

their product is increased. The move also increases the term arising from the coupling in

the z direction, as long as it is antiferromagnetic (λJ > 0). The magnetic field Bz does not

affect R because the two configurations have the same total magnetization.

This world–line algorithm for one–dimensional quantum spin–1/2 systems can easily be

generalized to higher dimension. There are different possibilities for dividing up the Hamil-

tonian. For d = 2, one might break H into four pieces corresponding to odd and even

links in each of the x and y directions of the spatial lattice. This requires 4L intermediate

states, where L = β/∆τ . The allowed spin configurations are even more restricted, and not

completely trivial to visualize. Pulling world–lines across an unshaded plaquette in either

the x or y directions are still allowed moves. These will now change the values of eight spins

and eight of the plaquettes of the lattice. However, these moves do not exhaust the full

phase space. Moves which introduce a local twist of the lines are also permitted, and should

be included to ensure ergodicity. Indeed, the density of these local twists has been used to

characterize the various phases of the Hamiltonian.
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It is also possible to break H into only two pieces, each consisting of independent four

site terms. The resulting matrix elements are a bit more complicated to evaluate, but the

variance in the QMC is reduced since more of the sum is done analytically. Also, this

approach involves introducing only half as many time slices (2L), and provides an easier

means to keep track of local twists. This second method is also useful in the study of models

with “ring exchange” terms, which have recently been proposed.

It is possible to introduce variance reduction techniques into world–line monte carlo.

Rather than suggesting a move which would pull a line across an unshaded plaquette each

time that plaquette is encountered in sweeping through the lattice, one can modify the

suggestion probability based on the configuration of spins on neighboring sites. In general

this is done according to some insight into the expected correlations, reducing the rate of

suggestion of moves whose acceptance would violate expected structures. Of course, any such

modification of the suggestion probability must also be appropriately accounted for in the

Metropolis acceptance/rejection step so as to preserve detailed balance. Thus the algorithm

always remains exact, to within Trotter errors, and only the variance and equilibration are

affected.

We can now summarize the procedure for generating configurations in a world–line sim-

ulation of the quantum spin–1/2 XXZ Hamiltonian: Initialize the lattice to a configuration

which respects local conservation laws. Then suggest moves, like pulling world lines across

unshaded plaquettes, which result in allowed configurations, and accept or reject them using

the Metropolis algorithm.

Snapshots of the spin configurations in the course of the simulation of the XXZ Hamil-

tonian are given in Fig. 3 for J = 1 and λ = 0, 1, 2. These provide intuitive pictures of the

underlying correlations. For example, we can see the antiferromagnetic spin order in the z

direction build up as λ increases.

While, these snapshots provide qualitative pictures of the physics, we need to describe

how to measure operator expectation values quantitatively. It turns out there are constraints

on what one can calculate. This is a serious drawback of the world–line algorithm, especially

in comparison with the determinant approach. Consider evaluating,

〈Â〉 = Z−1Tr[Âe−βĤ ]. (12)

If the operator Â is diagonal in the basis of complete sets of intermediate states, the pro-

cedure is simple. Â acts on the state 〈Sz,1,1 Sz,2,1 . . . Sz,N,1| yielding a number a[ {Sz,i,1, }]

without altering the state. The operator e−βH then generates in the numerator the same

sequence of matrix elements as in the partition function in the denominator. In other words,

〈A〉 =

∑

{Sz,i,l}W [{Sz,i,l}]a[ {Sz,i,1} ]
∑

{Sz,i,l}W [{Sz,i,l}]
. (13)

Thus if configurations are generated with weight proportional toW , one simply accumulates

the numbers a[ {Sz,i,1 } ] and averages them over the course of the measurement sweeps in

the simulation. The periodic nature of the trace allows the operator A to be inserted at
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FIG. 3: “Typical” snapshots of world–line configurations for the XXZ Hamiltonian on an N = 8

site lattice at J = 1 with λ = 0, 1, 2, inverse temperature β = 2 (with L = 8), and magnetization

per site mz = 0. The world–lines follow the trajectories of the up spins, as described in the text.

As λ becomes large the world–lines increasingly tend to occupy every other spatial site, reflecting

a growth of antiferromagnetic order.

any point in the string of matrix elements. To improve statistics, one can measure values

a[ {Sz,i,l } ] on all time slices.

Expectation values of diagonal operators Â(0)B̂(τ) which are offset in imaginary time

(here B̂(τ) = eτĤB̂e−τĤ) can also be measured for τ = n∆τ by inserting Â and B̂ into

positions in the product of matrix elements separated by imaginary time τ and accumulating

the numbers a[Sz,1,l, Sz,2,l, . . . Sz,N,l] b[Sz,1,l+n, Sz,2,l+n, . . . Sz,N,l+n] which arise. Again we

can improve statistics by inserting the pair A,B anywhere in the string of incremental time

evolution operators as long as they are separated by imaginary time n∆τ .

Measuring matrix elements of operators which are not diagonal in the basis of interme-

diate states is harder, and, indeed, often not possible. Consider 〈S+,iS−,i+1 + S−,iS+,i+1〉,

an expectation value which is needed in determining the energy. This operator acts on an

intermediate state vector and modifies it, so that the matrix elements in the numerator and

denominator are no longer identical. This means that our ratio of integrals is no longer

of the form of an integral of some “weight function” in the denominator and the product

of the same weight function and a “measurement” in the numerator. We can fix this by

multiplying and dividing by the matrix element in the denominator which is missing in the

numerator. Then the same product appears in both places, and the measurement is made

by accumulating the ratio of the new matrix element to the old one. That is,

〈S+,iS−,i+1 + S−,iS+,i+1〉 =

8



〈
〈Sz,i,l Sz,i+1,l|(S+,iS−,i+1 + S−,iS+,i+1)e

−∆τĤj |Sz,i,l+1 Sz,i+1,l+1〉

〈Sz,i,l Sz,i+1,l|e−∆τĤα|Sz,i,l+1 Sz,i+1,l+1〉
〉MC. (14)

where 〈 〉MC denotes a monte carlo average of the indicated ratio of matrix elements. We

have again exploited the fact that the operator can be inserted at any point l in the string

of intermediate states. Hα is whatever piece of the Hamiltonian happens to be acting at

that point. In fact, to get a nonzero result, Hα must be that piece of the Hamiltonian which

connects the spatial sites (i, i+ 1) in propagating from l to l + 1.

We can make this a little more concrete by noting the matrix element,

〈Sz,i,l Sz,i+1,l|(S+,iS−,i+1 + S−,iS+,i+1)e
−τHα |Sz,i,l+1 Sz,i+1,l+1〉, (15)

vanishes if Sz,i,l + Sz,i+1,l = 0, 2. (Recall local conservation laws require that Sz,i,l+1 +

Sz,i+1,l+1 = Sz,i,l + Sz,i+1,l. In this case we have either no world–lines propagating up the

shaded square, or else two world–lines propagating up the square. No spin–flips are possible,

and it is natural that the expectation value vanish. If, on the other hand, the plaquette

has Sz,i,l + Sz,i+1,l = 1, then there is a non–zero contribution. The ratio of expectation

values is tanh(J∆τ/2) if the plaquette’s single world–line is propagating vertically upward,

and coth(J∆τ/2) if the single world–line traverses the plaquette diagonal. That the kinetic

energy is large in the latter case is intuitively appealing when the model being simulates

is a fermion or boson Hamiltonian: a world–line hopping diagonally across the plaquette

makes a large contribution to the expectation value of the kinetic energy, while a world–line

moving upwards (without hopping) makes a small contribution to the kinetic energy.

Measuring an operator which does not conserve particle number locally, is even more

complicated, since the resulting ratio is ill–defined. More precisely, an operator like

S+,iS−,i+j + S−,iS+,i+j where j > 1 will result in a sequence of states in the numerator

which is completely different from that in the denominator. It is possible to solve this prob-

lem by conducting two parallel simulations, one with “broken” world–lines, but in practice

the technique is complicated, and also results in measurements which are noisy. For this

reason, most world–line simulations of the simple sort described here, measure only oper-

ators which do not break world–lines. These issues are closely related to the discussion of

“forward–” and “side–” walking in diffusion QMC, and are addressed by the development

of ‘worm’ algorithms.

We comment that it is sometimes possible to measure correlation functions which at

first appear to break world lines by inserting different types of intermediate states in the

simulation. For example, to measure an operator like S+,iS−,i+j+S−,iS+,i+j = 2(Sx,iSx,i+j+

Sy,iSy,i+j), which is not diagonal in the basis of S
z,i, one could insert as intermediate states

complete sets of eigenstates of Sx,i in the path–integral. Whether or not this trick works

depends on the sign problem. Because the XXZ Hamiltonian does not commute with Sx,tot,

the eigenstates |Sx,1 = +, Sx,2 = +〉 and |Sx,1 = −, Sx,2 = −〉 are mixed, in addition to

a mixing of |Sx,1 = +, Sx,2 = −〉 and |Sx,1 = −, Sx,2 = +〉. A straightforward calculation

shows that there is no sign problem if one is in the Heisenberg or Ising limits λ ≥ 1.
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In spite of the restrictions on the operators we can measure, we are still able to extract

a lot of interesting physics from world–line simulations, as shown briefly below.

We have one final caveat to make about the world–line algorithm. The moves described

above, in which world–lines are locally deformed, are not ergodic. For example, they never

change the total magnetization. This is so because whole world lines are never created or

destroyed, only changed in shape. There is also another, more subtle, quantity that these

moves conserve: the winding number. Periodic boundary conditions require that the world

lines connect across the last and first time slices in a continuous fashion. They can do

this is a trivial way, with each world–line moving generally upward through the lattice (see

Fig. 4a), but they can also satisfy the periodic boundary conditions in imaginary time with

configurations in which there is a net flow of world–lines across the right or left spatial sides

of the system (see Fig. 4b). The latter configurations are said to have non–zero winding

number. Moves which are local deformations of the world lines cannot change the winding

number, that is, they can never evolve from Fig. 4a to Fig. 4b.

FIG. 4: World–line configurations with winding number W = 0 [a] and W = 1 [b]. Both satisfy

all the local conservation laws, as well as periodicity in imaginary time. No sequence of local

distortions of the world–lines can evolve the system from [a] to [b].

As with the equivalence of the fixed and fluctuating particle number ensembles, in the

thermodynamic limit it can be argued that the fixed winding number sector yields the same

physics as allowing the winding number to fluctuate. Perhaps the simplest way to see this is

that if there were no spatial periodic boundary conditions in the kinetic energy term, then

winding around the lattice would not be possible. But we certainly expect that periodic and

open boundary cinditions to give the same result in the thermodynamic limit. Therefore we

expect the inclusion of non–zero winding moves to be unnecessary in the thermodynamic

limit. It has also been been verified by explicit calculation with and without moves which
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change the winding number that expectation values of observables are the same in the

thermodynamic limit. An ancillary benefit of loop algorithms, whose primary virtue is the

rapid exploration of phase space, is that they also allow for moves connecting the different

magnetization and winding number sectors.

D. Some Results

One of the most fundamental issues in the study of the spin-1/2 antiferromagnetic Heisen-

berg model was whether the ground state in two dimensions exhibits long range ‘Neel’ order.

This was of great interest subsequent to the discovery of high temperature superconductiv-

ity because of the antiferromagnetism present in the CuO2 layers of that material. QMC

played an important role in demonstrating that the ground state did have long range order,

as opposed to alternatives like ‘resonating valence bond’ states.

A variant of this problem, which we have studied extensively, is what happens to this Neel

state when an external field is applied in the z direction which changes the magnetization

away from mz =
1
N

∑

i Sz,i = 0. Such a field obviously breaks the full rotational symmetry

of the Heisenberg model. Somewhat counterintuitively, it favors magnetic order in the xy

plane! The reason is that a configurations of spins which are lined up antiferromagnetically

in the xy plane can tilt slightly up in the z direction and pick up field energy proportional to

the tilt angle. If the spins are lined up antiferromagnetically in the z direction, the energy

picked up by rotation of the spins which point in the opposite to the field is quadratic in

the rotation angle.

As a fascinating consequence, the application of a field can induce a finite temperature

Kosterlitz-Thouless phase transition, even though the system orders only at T = 0 in the

absence of the field.

We wanted to understand the answer to the following question: Suppose we took the

XXZ model with λ > 1 so that order in the z direction is preferred. What happens in that

case when a field is applied in the z direction? Which effect wins, λ > 1 or the field Bz?

Our interest in this problem actually came from the fact that the XXZ model is identical

to hard-core bosons on a lattice, interacting with a near-neighbor repulsion. The question

enunciated above turns out to be completely equivalent to asking which of superfluid or

charge density wave order wins in the boson model as the density is varied.

Fig. 5 shows some results for the antiferromagnetic structure factor in the z direction

Szz(π, π) =
1
N

∑

ij〈Sz,iSz,j〉, and the spin stiffness ρxy
s in the xy direction, as a function of

magnetization per site mz. Both are probes of long range magnetic order. The use of the

spin stiffness to determine the xy order is a consequence of the limitation on the world-line

algorithm’s ability to measure the spin correlations 〈Sx,iSx,j〉 directly. Instead the change in

the energy in response to a twist of the boundary conditions, ρxy
s , is measured by examining

the average winding number in the simulation. In the absence of a field, when mz = 0, there

is only order in the z direction, a consequence of the fact that λ = 3
2
> 1. However, when

Bz is turned on and mz moves away from 0, nonzero stiffness develops in the xy plane, and

the z order decreases. Finite size scaling of the z structure factor reveals that long range
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order remains for mz nonzero, out to about the point where the linear shape of Szz(π, π) vs

mz converts to quadratic.

The conclusion appears to be that simultaneous xy and z order occurs when λ > 1 and

Bz 6= 0. But more careful analysis of the dependence of the energy on the magnetization

reveals that the system is thermodynamically unstable, and rather than exhibiting simul-

taneous order of the two types, instead phase separates into regions of long range z and

long range xy order. This instability appears in Fig. 6 in the form of a negative magnetic

susceptibility.

FIG. 5: The magnetic structure factor in the z direction, Szz(π, π) and spin stiffness in the xy

direction ρxys as a function of magnetization per site mz, in the Ising limit of the XXZ model

(λ = 3
2). The lattice is 8x8 and the inverse temperature β = 6. The system develops long range

xy order (ρxys 6= 0) when mz 6= 0. It also appears to retain long range z order.

Interestingly, we found that if one considers the Heisenberg model with a term

J2
∑

〈〈ik〉〉 Sz,iSz,k which couples the z component of spin on next-near neighbor sites (i.e. sites

which are diagonally across from each other on a plaquette of the lattice) then the ground

state can exhibit simultaneous order in the xy plane and in the z direction, in which com-

ponents of spin form alternating up and down Sz lines. In boson language, superfluid order

coexists with a pattern of boson occupation in which full and empty rows alternate.

Such issues of phase separation are of course intensely studied for the Hubbard Hamilto-

nian, and variants like the t − J model as well, where one is interested in the clustering of

holes doped into an antiferromagnet.

A final comment concerns the dramatic jump in the field Bz required to change the

magnetization around mz = 0 in Fig. 6. If you imagine starting from a state of all spins

down, mz = −
1
2
, then flipping spins up is energetically favorable with an antiferromagnetic

interaction. So, in fact, a negative field is required to prevent spins from flipping up. It

12



FIG. 6: z component of magnetization per site mz as a function of magnetic field Bz for the XXZ

model in the Ising limit (λ = 3
2). The slope of mz vs Bz is the susceptibility, and is negative near

mz = 0. This indicates a thermodynamic instability and phase separation.

becomes slightly less energetically favorable to flip spins up as mz increases, and so Bz

increases gradually with mz. However, at mz = 0 one has finally a situation where, for the

first time, further up flips break antiferromagnetic bonds, an energetically costly thing to

do. To force the system into such a state, Bz needs to take a big jump to positive values.

This jump is the analog of the jump in the chemical potential µ needed to change the

particle density in the Hubbard model that occurs at the Mott transition, when doubly

occupied sites first appear on the lattice.

E. World–Lines for Interacting Fermions

Our second illustration of the world–line algorithm is for lattice fermions. We present

only a short discussion because, as we shall see, the sign problem makes fermion world

line QMC impractical except in one dimension. Consider first a model of one–dimensional

spinless fermions with a repulsion V between near–neighbor sites.

H = −t
∑

i

(c†ici+1 + c†i+1ci)− µ
∑

i

ni + V
∑

i

nini+1. (16)

c†i and ci are fermion creation and destruction operators at site i and ni is the number

operator. The formulation of the world-line algorithm resembles that of the quantum spin–

1/2 Hamiltonian just described very closely. We break up the exponential of −βH and

insert complete sets of occupation number states. The only non–zero matrix elements are,
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〈 0 0 |et∆τ(c†
i
ci+1+c

†
i+1

ci),| 0 0 〉 = 1,

〈 1 0 |et∆τ(c†
i
ci+1+c

†
i+1

ci),| 1 0 〉 = cosh(t∆τ), 〈 1 0 |et∆τ(c†
i
ci+1+c

†
i+1

ci),| 0 1 〉 = sinh(t∆τ),

〈 0 1 |et∆τ(c†
i
ci+1+c

†
i+1

ci),| 1 0 〉 = sinh(t∆τ), 〈 0 1 |et∆τ(c†
i
ci+1+c

†
i+1

ci),| 0 1 〉 = cosh(t∆τ),

〈 1 1 |et∆τ(c†
i
ci+1+c

†
i+1

ci),| 1 1 〉 = 1. (17)

These matrix elements are identical to those arising in the spin–1/2 XXZ model. This

similarity in the world–line algorithm for spin, boson, and fermion models reflects the exact

mappings which exist between these problems in one dimension.

For more general fermion Hamiltonians, world–line algorithms differ from those for quan-

tum spins (and bosons) in two ways. First, in the fermion case, one is typically interested

in models in which the operators also carry a spin index. (Of course there are instances of

quantum spin and boson models where there are several spin or boson species, but such cases

are the exception, whereas for fermions they are the rule.) When there are only density–

density interactions of the form ni↑nj↓ coupling the two spin species, that is, no spin flip

hopping terms like c†i↑cj↓ or more complicated (‘Hund’s Rules’) interactions like c†i↑ci↓c
†
j↓cj↑,

then the path–integral which arises involves two separate checkerboard lattices. That is, the

off–diagonal matrix elements involve only one spin species at a time, and the coupling be-

tween the spin species is through the diagonal terms which factor out of the matrix elements

as numbers. Thus one suggests moves which distort fermion world–lines of one spin species

leaving the other spin species’ world–lines unchanged, though this static configuration of

the other spin species does enter the acceptance–rejection decision through the diagonal

interaction terms.

The second, and much more profound, difference is in the sign problem. Boson and

quantum spin operators have non–zero commutation relations on the same site, but commute

on different sites. This means that the sign of the matrix elements entering the simulation is

determined completely locally, for example by the explicit solution of the two site problem

which arises after the checkerboard decomposition. Fermion operators, on the other hand,

anticommute on different sites. Additional minus signs can arise in getting the fermion

creation operators in their canonical order after a hopping process.

To be more specific, recall that in expressing a fermion occupation number state like

|1 0 1 1 0 . . . 〉 a convention for the order in which the creation operators act on the vacuum

must be chosen. For example we might define |1 1 0 1 0 . . . 〉 = c†1c
†
2c
†
4 . . . |vac〉. Consider the

action of c†3c4 on this state. We anticommute the pair of operators through c†1 and c†2, but

since we are moving two operators together there are no sign changes. At this point, the

destruction operator for site 4 meets the creation operator on site 4 and they cancel. The

crucial point to observe is that this whole process leaves the creation operators in their

canonical order c†1c
†
2c
†
3 . . . |vac〉 so we get the occupation number state |1 1 1 0 0 . . . 〉 with no

minus sign.

What would happen if we instead acted with a longer range hopping c†5c2 on this state?

This pair of operators would anticommute through c†1 without introducing a minus sign. c
†
2
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would then meet and destroy c2, but c
†
5 would be left out of its canonical order, that is, to

the left of c†4. Anticommuting it through yields −|1 0 0 1 1 . . . 〉. This minus sign makes the

probability with which one would like to generate the associated world-line configurations

negative, which prevents useful simulations. The general rule is that one gets a minus sign

if there is an odd number of occupied sites “in between” the two states that are connected

by the hopping, where “in between” means the order of creation operators in the convention

chosen for acting on the vacuum state. One does not need to have long–range hopping

to encounter this problem. If one has a two–dimensional lattice and has a convention for

occupation number states in which the operators for rows in the x direction are adjacent,

the hopping in the y direction will be between sites which are not “neighbors” in the string

of creation operators. Such hopping processes will yield minus signs.

Fermion world–line simulations are not possible except strictly in one dimension. Even

a one–dimensional lattice with a single “impurity” orbital onto which the fermions can hop

will have a sign problem. As we have discussed, hoppings which are longer range than

near–neighbor cannot be handled. An exception is the case when only interactions, and not

kinetic energy terms couple one–dimensional chains along which the fermions hop. Thus the

world–line algorithm for fermions is almost exclusively applied to models in one–dimension.

F. Conclusions

The world–line QMC algorithm is a powerful approach to the simulation of lattice quan-

tum spin, boson, and fermion models. It is considerably more pictorial than other QMC

methods like the determinant algorithm. It also has a local action which results in a nomi-

nally linear scaling with system size for a sweep through the lattice updating all the degrees

of freedom.

However, the technique also has a number of drawbacks: The difficulty in measuring

certain observables, the sign problem which prevents the study of frustated spin models or

fermions in greater than one dimension, and long equilibration and autocorrelation times.

A number of these difficulties have been solved by the construction of loop, continuous

time, worm, and stochastic series expansion, algorithms. But the sign problem has not been

solved.
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H. Appendix: A Lightning Review of Monte Carlo

Nature generates sequences of states for the experimentalist according to the Boltzmann

distribution. The experimentalist then looks at those states and makes measurements,

averaging over as long a time (as many states) as needed to get results to a desired level of
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accuracy. The goal of Monte Carlo is to devise a method where the computer plays a similar

role to that of nature, generating configurations according to some desired probability. In

the following, we will consider a general probability for the state i given by pi = wi/
∑

i wi.

In most classical statistical mechanics problems wi = e−βEi , the Boltzmann distribution,

but we have seen in QMC that wi could have some more complex structure.

The Monte Carlo procedure is very simple.

(i.) Take an initial configuration i and propose a change to a new configuration j.

(ii) Accept the new configuration with probability min(1, wj/wi). Notice that you do not

need to know
∑

i wi to compute this probability.

(iii) Repeat the process many times.

There are of course many subtleties: What sort of procedure is followed to “suggest

changes”? How many configurations do you need to generate and do you, as in some exper-

iments, need to allow the system time to equilibrate? The reader is referred to textbooks

for the answers to these detailed questions.

The rough justification of the monte carlo method is the following. Denote bt Tji the

probability of making a transition from state i to state j.

(i) The matrix T has the properties Tji ≥ 0 and
∑

j Tji = 1. It is not difficult to show that

such a stochastic matrix has maximum eigenvalue λ = 1.

(ii) The eigenvector with this maximal eigenvalue is wi. This can be seen by noting that the

choice of acceptance probability p guarantees detailed balance: Tjiwi = Tijwj for all pairs of

states ij. As a consequence
∑

i Tjiwi =
∑

i Tijwj = wj

∑

i Tij = 1 · wj.

(iii) The repeated use of T to generate states can be thought of as the repeated application of

the matrix T , a process which, for any matrix, projects out the eigenvector of largest eigen-

value. Since w is that eigenvector, repeated use of T will generate states with probability

proportional to wi.
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