
HOW TO WRITE A DETERMINANT QMC CODE

Introduction

I am going to invert the usual order of teaching. These notes will begin with the prescrip-

tion for writing a determinant QMC code for the Hubbard model. After I describe how to

do it, I go through some of the derivations!

The Hamiltonian

Our goal is to write a QMC code for the Hubbard Hamiltonian,

Ĥ = K̂ + V̂

K̂ = −
∑

ijσ

tij (c†iσcjσ + c†jσciσ) − µ
∑

iσ

niσ

V̂ = U
∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
) (1)

The indices i and j run from 1 to the number of spatial sites N of the lattice.

Besides the Hamiltonian Ĥ, the physics is also determined by the inverse temperature

β = 1/T . We are going to divide β into L ‘imaginary time intervals’, β = L ∆τ . The length

of each interval ∆τ should be chosen such that t U (∆τ)2 < 1/10.

The Kinetic Energy Matrix

The kinetic energy matrix contains all the terms in the Hamiltonian which are quadratic

in the fermion creation and destruction operators. That is, we write,

K̂ =
∑

σ

( c†1σ c†2σ · · · )







k11 k12 · · ·
k21 k22 · · ·
...

...
. . .













c1σ

c2σ
...





 . (2)

k is defined to be the NxN matrix with elements ∆τkij.

As an example, for a one dimensional Hubbard model with N = 6 sites, nearest neighbor

hopping, and periodic boundary conditions,

k = ∆τ



















−µ −t 0 0 0 −t
−t −µ −t 0 0 0
0 −t −µ −t 0 0
0 0 −t −µ −t 0
0 0 0 −t −µ −t
−t 0 0 0 −t −µ



















(3)

The Interaction Energy Matrix

Fill an array s(i, l) (the ‘Hubbard-Stratonovich field’) randomly with values ±1. The

first index i goes from 1 to N , and the second index l goes from 1 to L. Define a set of L
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diagonal matrices, each of dimension N ,

v↑(l) = λ

















s(1, l) 0 0 0 · · ·
0 s(2, l) 0 0 · · ·
0 0 s(3, l) 0 · · ·
0 0 0 s(4, l) · · ·
...

...
...

...
. . .

















(4)

Here the parameter λ is given by cosh λ = eU∆τ/2. The matrices for the down spin electrons

differ only by a sign: v↓(l) = −v↑(l).

Initializing The Greens Function

Compute the up and down Green’s functions,

Gσ = [ I + ek evσ(1) ek evσ(2) ek evσ(3) · · · ek evσ(L) ]−1 (5)

Here I is the N dimensional identity matrix.

Updating the Hubbard-Stratonovich Field

Suggest a change in the Hubbard Stratonovich field on site i = 1 of imaginary time slice

l = L by computing the quantity,

d↑ = 1 + ( 1 − [G↑]ii ) ( e−2λ s(i,l) − 1 )

d↓ = 1 + ( 1 − [G↓]ii ) ( e+2λ s(i,l) − 1 )

d = d↑d↓ (6)

Throw a uniformly distributed random number, 0 < r < 1. If r < d, update the Hubbard

Stratonovich field on site i of imaginary time slice l via s(i, l) = −s(i, l).

Updating the Greens Function

If the move was accepted, the Green’s functions, which depend on s (see Eq. 5 and

remember vσ(l) are functions of s) will now be different. You could recompute Gσ from

Eq. 5, using the new s. This will take a time which goes as N3, since it involves a matrix

inversion. There’s a faster (order N2) trick to get the new Gσ, which takes advantage of the

fact that only one element in one of the vσ(l) has changed. Compute the vectors,

cj↑ = −( e−2λ s(i,l) − 1 ) [G↑]ij + δji ( e−2λ s(i,l) − 1 )

cj↓ = −( e+2λ s(i,l) − 1 ) [G↓]ij + δji ( e+2λ s(i,l) − 1 )

bk↑ = [G↑]ki / ( 1 + ci↑ )

bk↓ = [G↓]ki / ( 1 + ci↓ ) (7)

Here δij is the usual Kronecker δ. Remember that i is the fixed site whose Hubbard-

Stratonovich field is being updated. The free indices j, k run from 1 to N . Then the new

Gσ are given by

[Gσ]jk = [Gσ]jk − bjσ ckσ. (8)
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Don’t forget to update your interaction energy matrix if you accept the move (Eq. 4).

After the new Gσ are computed, go to Hubbard-Statonovich field on the second spatial site

on imaginary time slice l = L and suggest a change to it, and follow the procedure of Eqs. 6-8

again, with i = 2. Continue this until all spatial sites of time slice l = L are updated.

Wrapping the Greens Function

After all spatial sites i of imaginary time slice l = L have been updated, change the

Green’s functions via,

Gσ = [ ek evσ(l) ] Gσ [ ek evσ(l) ]−1 (9)

Now update all the Hubbard-Stratonovich variables on imaginary time slice l = L − 1

following the procedures of Eqs. 6-8. When all spatial sites of imaginary time slice are

finished, wrap the Greens functions using Eq. 9 again.

Continue the process of Eqs. 6-9 until all imaginary time slices are updated.

Measurements

After completing an entire set of updates to all the space-time points of the lattice. make

measurements. For example, the density of electrons of spin σ on site i is given by,

〈niσ〉 = 1 − [Gσ]ii. (10)

The double occupancy rate on site i is

〈ni↑ni↓〉 = ( 1 − [G↑]ii ) ( 1 − [G↓]ii ) (11)

The local moment on site i is,

〈(ni↑ − ni↓)
2〉 = 〈ni↑ + ni↓〉 − 2〈ni↑ni↓〉. (12)

The correlation between moments on sites i and j, for i 6= j, is given by,

S+i = c†i↑ci↓

S−j = c†j↓cj↑

〈S+iS−j〉 = −[G↑]ji [G↓]ij (13)

You can also measure pairing correlations, charge density wave correlations, etc.

Full Monte Carlo

Begin by initializing the Hubbard-Stratonovich field and computing the Kinetic and In-

teraction matrices (Eqs. 3,4), and finally the Green’s function (Eq. 5). Do a few hundred

‘equilibration’ sweeps of the lattice (Eqs. 6-9) without making any measurements. Follow

this by a few thousand ‘measurement’ sweeps in which you perform the operations of Eqs. 6-

9 and also Eqs. 10-12. Normalize your measurements to the number of measurement sweeps

performed.

Congratulations, you’re done!

We will now discuss the background of the procedure which we have just described.
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DERIVATION

A Useful Analogy: Multidimensional Gaussian Integration

The equations involved in determinant QMC bear many similarities with multidimen-

sional Gaussian integrals. Reviewing these identities will help provide an intuitive feel for

the formulae of determinant QMC, within a familiar context.

The generalization of the one dimensional Gaussian integral,

∫ +∞

−∞
dx e−ax2

=

√
π

a
, (14)

to many dimensions is,

Z =
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN e−~x A ~x T

=
πn/2

√
det A

. (15)

Here ~x is an N dimensional vector of real numbers and A is a real, symmetric, N dimensional

matrix. I have used the notation Z for the integral to emphasize that it would be the partition

function for a set of classical variables whose action is given by the quadratic form ~xA~xT .

We also know how to do these integrals when the integrand includes factors of xi.

〈xixj〉 = Z−1
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN xixj e−~x A~x T

=
1

2
[A−1]ij (16)

Again, the notation 〈xixj〉 emphasizes a possible statistical mechanical interpretation of the

ratio of integrals.

Further factors of xi in the integrand generate expressions like,

〈xixjxkxl〉 = Z−1
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxNxixjxkxle

−~xA~x T

=
1

4
([A−1]ij[A

−1]kl + [A−1]ik[A
−1]jl + [A−1]il[A

−1]jk). (17)

These are similar in form to ‘Wick’s Theorem’, which tells us that contractions of products

of many fermion operators can be expressed as sums of products of contractions taken two

operators at a time, in all possible permutations.

While it is possible to do these integrals with arbitrary polynomials as part of the inte-

grand, they cannot be done when a quartic term appears in the exponential. We shall see

shortly the analogies of these various statements for traces over fermion Hamiltonians.

Basic Formalism of Determinant QMC

In solving the Hubbard model we want to evaluate expressions like

〈Â〉 = Z−1 Tr [Âe−βĤ ]

Z = Tr e−βĤ (18)

The “Tr” is a trace over the 4N dimensional Hilbert space, where N is the number of sites.
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In analogy with multidimensional Gaussian integration, we can do such traces if they are

over quadratic forms of fermion operators. Suppose

Ĥ = ( c†1σ c†2σ · · · )







h11 h12 · · ·
h21 h22 · · ·
...

...
. . .







(

c1σ

c2σ · · ·
)

. (19)

Here h is an NxN matrix. The identity is,

Z = Tr e−βĤ = det[I + e−βh]. (20)

Note that while the original “Tr” is over a quantum mechanical 4N dimensional Hilbert space,

the “det” is a usual determinant of NxN matrices. “I” is the N dimensional identity matrix

and “h” is the matrix of numbers entering the definition of Ĥ. It is worth emphasizing

that because we are taking the trace over the full 4N dimensional Hilbert space, we are

including states of all occupation numbers. The determinant QMC method, as formulated

here, works in the grand canonical ensemble. Particle density is controlled by changing the

chemical potential.

It is trivial to check that Eq. 20 holds for a single fermion degree of freedom, with

Hamiltonian Ĥ = ǫ c†c. There are two states in the Hilbert space and

Z = 〈 0 | e−β ǫ c†c | 0〉 + 〈 1 | e−β ǫ c†c |1 〉 = 1 + e−β ǫ. (21)

More generally (e.g. for more than one fermion degree of freedom) Eq. 20 can be verified by

going to the basis where h is diagonal. The equations can also be derived by employing the

techniques of Grassman integration.

There is a more general identity. If one has a set of quadratic Hamiltonians l = 1, 2, . . . L

Ĥ(l) = ( c†1σ c†2σ · · · )







h(l)11 h(l)12 · · ·
h(l)21 h(l)22 · · ·

...
...

. . .







(

c1σ

c2σ · · ·
)

, (22)

then,

Z = Tr [e−∆τĤ(1)e−∆τĤ(2) · · · e−∆τĤ(L)] = det[ I + e−∆τh(1)e−∆τh(2) · · · e−∆τh(L)]. (23)

Here I have changed the prefactor in the exponential from β to ∆τ for reasons which will

soon be clear. It is also true that,

Gij = 〈ciσc
†
jσ〉 = Z−1 Tr [c iσc

†
jσ e−∆τH(1)e−∆τH(2) · · · e−∆τH(L) ]

= [ I + e−∆τh(1)e−∆τh(2) · · · e−∆τh(L) ]−1
ij . (24)

The “fermions Greens function” is just an appropriate matrix element of the inverse of the

NxN matrix whose determinant gives the partition function.

The above formulae describe how to perform traces over quadratic forms of fermion

degrees of freedom. Unfortunately, the Hubbard Hamiltonian has an interaction term
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Uni↑ni↓ = Uc†i↑ci↑c
†
i↓ci↓ which is quartic in the fermion operators. To handle such terms,

we employ the (discrete) Hubbard–Stratonovich transformation,

e−U∆τ(n↑−
1

2
)(n↓−

1

2
) =

1

2
e−

U∆τ

4

∑

s

eλ s (n↑−n↓) (25)

Here coshλ = eU∆τ/2, and s is an Ising variable which can take on the two values S = ±1.

This identity can be verified by explicitly enumerating the 4 possible choices for n↑, n↓.

Now we divide β = L∆τ and employ the Trotter decomposition. This allows us to isolate

different pieces of the Hamiltonian. We write Ĥ = K̂+V̂ where K̂ contains all the one–body

pieces and V̂ the on–site Hubbard interaction. Then,

Z = Tr e−βĤ = Tr [e−∆τĤ ]L ≈ Tr [ e−∆τK̂ e−∆τV̂ e−∆τK̂ e−∆τV̂ · · ·]. (26)

The final expression is only approximate since K̂ and V̂ do not commute. However, the

approximation becomes better and better as L increases (∆τ decreases). As mentioned

before, the errors should be pretty small if t U (∆τ)2 ≈ 1/10.

The e−∆τK̂ are quadratic in the fermion operators. For each factor of the L terms e−∆τV̂

above, we introduce N Hubbard–Stratonovich fields, one for each of the spatial sites where

we have an on–site interaction to decouple. The Hubbard–Stratonovich field s(i, l) therefore

has two indices, space i and imaginary–time l. Now the e−∆τV̂ (l) are also quadratic in the

fermion operators. We put an argument l on V̂ to emphasize that while the K̂ are all

identical, the V̂ (l) contain different Hubbard–Stratonovich fields on the different imaginary

time slices.

Applying Eqs. 22-23 allows the analytic evaluation of the trace,

Z =
∑

s(il)

detM↑ detM↓, (27)

with,

Mσ = I + e−ke−vσ(1)e−ke−vσ(2) · · · e−ke−vσ(L). (28)

We get a determinant for each of the two spin species. The quantum partition function has

now been expressed to a classical monte carlo problem: We need to sum over the possible

configurations of the real, classical, variables s(i, l) with the “Boltzmann weight” which is

the product of the two fermion determinants. Note that as in world-line QMC, the classical

variable to be summed over has an additional index l labeling imaginary time.

Eqs. 2-4 can now be understood as coming from applying the general operator identity

of Eqs. 22-23 to our specific problem of evaluating Eq. 26, with the interaction operators V̂

made into quadratic forms by using Eq. 25.

The algorithm, as stated, scales in CPU time as N4L. The reason is that re–evaluating the

determinant of M ′ takes N3 operations, and we must do that NL times to sweep through all

the Hubbard–Stratonovich variables (if, as is typically done, we change just one at a time).
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This scaling can be reduced to N3L. (In what follows I will drop the spin indices.) The idea

is to write M ′ = M + dM and the ratio of determinants as,

detM ′/detM = det(M−1 M ′) = det(M−1 (M + dM)) = det(I + GdM), (29)

with the definition G = M−1. It turns out that dM is very simple because when a Hubbard–

Stratonovich field is flipped, a single diagonal entry in v(l) changes. Because dM is sparse,

the evaluation of det(I + GdM) takes a cpu time independent of N and L! In fact, a little

bit of thought will convince you that Eq. 6 arises from Eq. 31 and the form for dM .

However, we need to know G = M−1 for this calculation, and once the Hubbard-

Stratonovich field change is made, one needs to update G. This updating G does not

take N3 iterations, as one might expect of a matrix inversion, but can be done in only N2

operations, again as a result of the simplicity of the change dM . The relevant identity which

relates the new G′ = (M + dM)−1 to the old G = M−1 is an application of the “Sherman–

Morrison” formula given, for example, in Press’s ‘Numerical Recipes’. If you work through

the Sherman-Morrison formula, as applied to our problem, you end up with Eqs. 7-8.

A final comment concerns the need for ‘wrapping’ Eq. 9. The use of Eq. 31 to derive

Eq. 6, and the Serman-Morrison formula to derive Eqs. 7-8 require that the imaginary time

slice of the Hubbard-Stratonovich variable being updated be at the end of the product in

Eq. 28. The process of wrapping moves the appropriate interaction matrix to the end of the

product through a cyclic permutation. That is,

[e−ke−vσ(L)] [I + e−ke−vσ(1)e−ke−vσ(2) · · · e−ke−vσ(L)]−1 [e−ke−vσ(L)]−1 (30)

= [I + e−ke−vσ(L)e−ke−vσ(1) · · · e−ke−vσ(L−1)]−1 (31)

Subtleties and “Tricks of the Trade”

While the above formulae allow you to write a “bare–bones” determinant QMC algorithm,

there are a number of refinements which are important.

(1.) It is possible to measure correlation functions with non–zero imaginary time separation,

but this requires considerably more work. Analytic continuation of such correlations is

required to get the dynamical response. That is quite difficult.

(2.) The product of matrices required in constructing M and hence G = M−1 (see Eq. 5

and Eq. 28) is numerically unstable at low temperatures and strong couplings. That is, the

product has a very high ratio of largest to smallest eigenvalue. Special “stabilization” is

required to do the matrix manipulations. While these add to the complexity of the code,

they however have no content in the sense that all the above equations are valid, it is just

a question of how best to multiply matrices on a machine of finite precision.

(3.) The determinants of the matrices can go negative. This is called the “fermion sign

problem.” The sign problem does not occur for certain special cases. For example, if U is

negative (the “attractive” Hubbard model), the individual determinants can go negative,

but the matrices are always equal and hence the determinant appears as a perfect square.

This is a consequence of the fact that the appropriate Hubbard–Stratonovich transformation
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couples S to the charge n↑ + n↓ as opposed to the spin as given in Eq. 25 for the repulsive

model. If U is positive but the chemical potential µ = U/2 (“half–filling”) one is also okay.

The matrices are not identical in this case, but the determinants are nevertheless related by

a positive factor, that is, they again have the same sign, so their product is always positive.

Some types of randomness are also acceptable. It is okay for the hoppings t and interactions

U to depend on the link or site. These statements are demonstrated by various particle–hole

transformations on the Hamiltonian.

(4.) Alternate Hubbard–Stratonovich transformations are possible. One can couple more

symmetrically to the spin, that is not single out the z component Or, one can couple to

pair creation operators. So far, all such alternatives give a worse sign problem than the

transformation Eq. 25. These more complicated transformations are needed to do ‘Hund’s

rule terms’ in multi-orbital Hubbard models.

(5.) Very similar “ground state” determinant simulations exist which work at T = 0 and in

the canonical ensemble.

What Determinant QMC Simulations Can Do

The state of the art of determinant QMC simulations, in the absence of a sign problem,

are studies of several hundred electrons down to temperatures of βt = 10 − 20. In terms of

temperature and bandwidth, this means T of roughly 1/100 of the bandwidth W = 8t of the

2-d Hubbard model. This is plenty cold enough to see well developed magnetic correlations.

For typical parameters, t = 1, U = 4 one chooses ∆τ = 1/8 so these beta values correspond

to roughly L = 100, and the simulation involves approximately 104 Hubbard–Stratonovich

variables.

In cases where one has a sign problem, βt is limited to 4–5. This is, unfortunately,

not low enough in temperature to make conclusive statements about certain important

problems, perhaps most prominently the question of the existence of long range d−wave

superconducting correlations in the Hubbard model away from half-filling.

Some Results

The evolution of the local moment (Eq. 12) at half-filling as the temperature is decreased

is shown in Fig. 1 on a 6x6 lattice for different interaction strengths U . We see the local

moment begin to develop from its uncorrelated value 1
2

at a temperature set by U , and

then saturate at low T . The local moment does not reach 1 at T = 0 because significant

quantum fluctuations allow doubly occupied and empty sites to occur even in the ground

state. However, as U increases, these fluctuations are suppressed and the moment becomes

better and better formed. The local moment also makes a further small adjustment at low

T , which is due to the onset of long range magnetic order.

From the energy we can get the specific heat (Fig. 2). It shows an interesting two peak

strudture. The high temperature peak is associated with the formation of local moments,

and the low temperature peak with their ordering. The Hubbard model maps onto the

Heisenberg model at large U . This connection is emphasized in Fig. 2 which shows that the
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FIG. 1: The local moment 〈m2
z〉 as a function of temperature for different interaction strengths U

and lattice size 6x6. The lattice is half-filled.

low temperature peak in the specific heat of the Hubbard model can be mapped onto that

of the Heisenberg model with J = 4t2/U .

0.01 0.1 1 10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 C
(T

)

 finite difference
 exponential fit
 t=0
 Heisenberg Model

 

 T

U = 10

FIG. 2: The specific heat of the Hubbard model for U = 10t. There is a high temperature peak

which is fit well by considering a single site Hubbard model (t = 0) and a low temperature peak

which agrees well with the Heisenberg model with J = 4t2/U = 0.4.

The near-neighbor spin correlation are shown in Fig. 3. The magnetic structure factor

S(π, π) = 1
N

∑

ij〈Sz,iSz,j〉 sums these correlations over the whole lattice. It is found that
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S(π, π) grows linearly with N at low T , indicating that the correlations extend over the

whole lattice.
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The near neighbor spin correlations

and magnetic structure factor of the half-filled Hubbard model at U = 2t.

FIG. 3:

Finally, in Fig. 4 we show the density of states at ω = 0 for the half-filled Hubbard model

at different values of U . The suppression of N(ω = 0) at low T and large U is a signature

of the presence of an insulating gap caused by the on-site repulsion.
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FIG. 4: The density of states at N(ω = 0). As T is lowered, a Mott-Hubbard gap opens up. The

half-filled Hubbard model is insulating.
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Conclusions

Determinant QMC is a powerful method for simulating interacting electron Hamiltonians

in more than one dimension. One can easily study problems with several hundred particles,

an order of magnitude greater than with exact diagonalization, and often large enough to

make compelling finite size scaling analysis. The sign problem is a very significant limitation,

however. For the repulsive Hubbard model, one can go to temperatures on the order of

W/30 where W is the bandwidth. For special cases like the attractive Hubbard model or

the repulsive model at half-filling, there is no sign problem, and the ground state properties

can be obtained.

Algorithm development in determinant QMC currently focusses on applications to

DMFT, where the Hubbard-Stratonovich field is allowed to fluctuate only in imaginary

time. A number of questions are being actively explored in this field: How does one incor-

porate more complex (e.g. Hund’s rules) interactions into simulation which include multiple

orbitals? Can one re-introduce some degree of spatial fluctuations?
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