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We investigate charge ordering in the Holstein model in the presence of anisotropic hopping,
tx, ty = 1 − δ, 1 + δ. Using Quantum Monte Carlo simulations, we show that density correlations
are relatively insensitive to moderate anisotropy δ . 0.15, but begin to decrease rapidly at fixed
temperature T for δ ∼ 0.30. Accompanying Mean Field Theory calculations show a similar
qualitative structure, with Tc relatively constant at small δ and then decreasing much more rapidly at
δ ∼ 0.40. We also obtain the density of states N(ω) and the momentum-dependent spectral function,
A(p, ω). The density of states provides a more clear signal of the charge ordering transition Tc at
large strain δ than does finite size scaling of the charge structure factor because of the small value
of the order parameter.

PACS numbers: 71.10.Fd, 71.30.+h, 71.45.Lr, 74.20.-z, 02.70.Uu

INTRODUCTION

Introduction needs to be smoothed out.

Studies of the effect of strain on charge density wave
(CDW) materials have seen a significant rise in activity
in the past several years[1–3]. The general interest
originates from the ability to tune a strongly correlated
insulating phase and induce transitions into alternate
patterns of charge order, or into metallic and even
superconducting phases. The application of strain also
provides specific insight into the nature of the native
CDW phase, for example into the role of Fermi surface
nesting[4, 5], by altering the band structure. Layered
transition metal dichalcogenides (TMDs) are one of the
most commonly investigated classes of CDW materials;
their transitions have previously been tuned by varying
the thickness or gate potential[6–11]. In 2H-NbSe2 the
CDW transition temperature Tc increases from Tc = 33
K in the bulk to Tc = 145 K in a single layer[12]. A
similar, albeit much smaller, effect is seen in 1T -TiSe2[13,
14]. Strain is therefore useful since it provides an
alternate method for modulating CDW physics. Indeed,
the exploration the potential use of strain to adjust
optical, magnetic and conductivity properties, especially
in TMDs, has been referred to as ‘strain engineering’.

Much of the existing theoretical work in the area
has been within first-principles density functional theory
(DFT). These studies find that, for 1T -TiSe2 the CDW
transition temperature can be enhanced or suppressed
with the application tensile or compressive strain,
respectively[2]. In the latter case, the weakened
CDW opens the door for superconductivity (SC). This
contrasting behavior is linked to the distinct behavior of
the band gap upon extension versus compression. Strain
has been shown to enhance SC in Na-intercalated NbSe2

as well[15]. Initially, the Na intercalation creates a large
electron doping which contracts the Fermi surface and

causes CDW to disappear. The subsequent application of
strain increases the density of states at the Fermi surface
and more than doubles the SC Tc.

CDW materials, including the TMDs, generally have
rich (e.g. layered) structures. The charge ordering
may not be commensurate with the lattice, and may
also differ on the surface and within the bulk. The
application of strain has additional complicating effects,
including changes in the phonon spectrum and of the
relative placement of different orbitals (energy bands).
1T -VSe2 in particular has a transition from hexagonal
to rectangular charge order wth strain which seems to
originate in the softening of certain phonon modes with
strain[16]. The aforementioned DFT investigations have
explored many of these details.

An alternate theoretical approach to DFT which
lends insight into CDW physics is through the solution
of simple model Hamiltonians. These can treat
intersite electron-electron interactions V , as described,
for example, by the extended Hubbard model. Charge
order arises directly from the minimization of the
intersite repulsion energy V by alternating empty and
occupied sites. Alternately, one can focus on electron-
phonon interactions, such as those incorporated in the
Holstein[17] or Su-Schrieffer-Heeger[18] models. Here the
driving force for CDW formation is a lowering of the
electron kinetic energy through the opening of a gap
in the spectrum. This energy lowering competes with
the cost in elastic energy associated with displacing the
phonon positions.

Investigation of quasi-2D materials, and on surfaces
motivates the theoretical study of two dimensional
geometries. Here, we focus on a simple model of charge
order driven by electron-phonon interactions, the square
lattice Holstein model. We incorporate the most direct
effect of strain, the enhancement of the orbital overlap
integral by compression, through an anisotropy in the
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hopping in the x and y directions. Our model is,

Ĥ =− tx
∑
i,σ

(
d̂†i,σd̂i+x̂,σ + d̂†i+x̂,σd̂i,σ

)
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∑
i,σ

(
d̂†i,σd̂i+ŷ,σ + d̂†i+ŷ,σd̂i,σ

)
− µ

∑
i,σ

n̂i,σ

+
1

2

∑
i

P̂ 2
i +

ω2
0

2

∑
i

X̂2
i + λ

∑
i,σ

n̂i,σX̂i . (1)

Here d̂†i,σ(d̂i,σ) are creation(destruction) operators for a
fermion of spin σ =↑, ↓ at site i of a two dimensional
square lattice. Thus the first term represents an electron
kinetic energy (band structure) with hoppings tx, ty and

dispersion εp = −2tx cos px − 2ty cos py. P̂i and X̂i

describe a local phonon mode of frequency ω0 on site
i. The electron-phonon coupling λ connects the electron
density n̂i = n̂i,↑ + n̂i,↓ at site i with the displacement

X̂i.
At constant volume, compression along one axis is

accompanied by an expansion in the orthogonal direction.
In what follows we set tx = 1 − δ and ty = 1 + δ, a
choice which keeps tx+ ty = 2, and hence the bandwidth
W = 4(tx + ty) constant. This choice is motivated
physically by the remarks above, but also allows us to
separate the effect of hopping anisotropy from changes
which would accompany a simple isotropic reduction or
enhancement of W .

The electron-phonon interaction promotes local
pairing of electrons. This can easily be seen by
considering the single site (t = 0) limit. Integrating
out the phonon degrees of freedom leads to an effective
attraction between the up and down spin fermions
Ueff ni,↑ni,↓, with Ueff = −λ2/ω2

0 . Associated with this
attraction is an oscillator displacement x∗ = −λ〈n〉/ω2

0 .
At strong coupling, well formed local pairs form due

to this on-site attraction. These pairs prefer to organize
their placements spatially. In particular, as the density
approaches half-filling, 〈n〉 = 1, on a bipartite lattice,
electron pairs and empty sites alternate on the two
sublattices. This CDW pattern is favored energetically
because the energy of neighboring occupied and empty
sites is lower by t2/Ueff relative to two adjacent occupied
or empty sites. This argument closely parallel the one
which motivates the appearance of antiferromagnetic
(AF) order in the large U (Heisenberg) limit of the
half-filled repulsive Hubbard model, where well-formed
local moments of up and down spin alternate due to the
J ∼ t2/U lowering of the energy relative to parallel spin
placement.

There is a similar analogy between the Hubbard and
Holstein Hamiltonians at weak coupling. In the Hubbard
model at U . t, AF order is associated with Fermi surface
nesting and a ‘Slater insulating’ phase- the opening of an
AF gap lowers the electron kinetic energy. In the Holstein
model, an alternation of phonon displacements opens a

CDW gap, with similar effect. It is interesting that these
close analogies exist despite the fact that the Holstein
Hamiltonian has a second set of (phonon) degrees of
freedom which is absent in the Hubbard Hamiltonian.

MEAN FIELD THEORY

We first solve Eq. 1 within a simple mean field
approach by ignoring the phonon kinetic energy and
making the ansatz X̂i → x0 + (−1)i x1. The value x0

describes a site-independent phonon displacement of the
similar to that described in the preceding section, while
x1 is the CDW order parameter, a nonzero value breaking
the symmetry between the two (equivalent) sublattices.
Ben- is x0 the same value as x∗ previously (from t = 0
calculation)? It is not obvious to me that turning on t
should not affect the uniform displacement. Perhaps it
is a particle-hole symmetry thing?

Inserting this form into Eq. 1, the quadratic
Hamiltonian can be diagonalized. From the resulting
electronic energy levels Eα one can compute the free
energy as a function of the order parameter x1,

F (x1) =
N

4
ω2

0x
2
1 − 2T

∑
α

ln
(
1 + e−βEα(x1)

)
(2)

Minimizing F (x1) determines the presence (x1 nonzero)
or absence (x1 = 0) of CDW order: Since the product
of the electron-phonon coupling λ and the phonon
displacement xi represents a local site energy, associated
with a non-zero value of x1 will be a CDW alternation.

Equivalently, one can write down coupled self-
consistent equations: Given x0, x1, the (quadratic)
Hamiltonian is diagonalized and the resulting charge
densities ni = n + (−1)i ν are computed. From these,
x0 and x1 are updated via x0 = (−2λ2/ω2

0)n and x1 =
(−2λ2/ω2

0) ν. This process is iterated to convergence.
Ben- please verify this discussion, e.g. factors of two

immediately above seem inconsistent with earlier text?
The change of variables to y = ω0x makes it evident

that within MFT the behavior of the Holstein model is
governed only by the combination λ2/ω2

0 rather than on λ
and ω0 individually. (This is only approximately true in
exact solutions, e.g. within DQMC.) We therefore define
the dimensionless coupling constant λD ≡ λ2/(ω2

0 W )
where W = 8 is the fermion bandwidth, and present
results as functions of λD.

We can easily generate many MFT results. The
captions to the figure placeholders indicate some possible
things we could show. I am by no means wedded to these
choices. Whatever you think is most interesting. These
MFT results need to be described here in the text, but
I will not do so because we have not decided what they
are.

One point we might want to make in the figures is the
smallness of the order parameter at large δt. This will
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FIG. 1. MFT result #1 The staggered phonon displacement
x1 is shown as a function of temperature T for different values
of the hopping anisotropy δ. Here the lattice size is N =
10x10, and the dimensionless coupling λD =?? (just one?). x1
onsets with the usual MFT order parameter critical exponents
β at the transition temperature Tc.
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FIG. 2. MFT result #2 The staggered charge density ν as
a function of the phonon order parameter x1 for different δ.
Here the lattice size is N = 10x10, and the dimensionless
coupling λD =?? (just one?).

connect with why it is hard to see CDW order in DQMC
by studying Scdw.
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FIG. 3. MFT result #3; preliminary version from Ben.
Critical inverse temperature βc for the CDW transition versus
hopping anisotropy δ. Results for several values of the
dimensionless electron-phonon coupling λD are shown.

QUANTUM MONTE CARLO

Methodology

We next treat the Hamiltonian Eq. 1 with determinant
Quantum Monte Carlo. The inverse temperature β is
discretized into L intervals of length ∆τ . Complete
sets of phonon position eigenstates {xi(τ)} are then
introduced between each incremental imaginary time

evolution operator e−∆τĤ. This leads to the usual
“bosonic’ action of the quantum harmonic oscillator

Sbose = ∆τ
( 1

2
ω2

0

∑
i

xi(τ)2 +
1

2

∑
i

(xi(τ)− xi(τ)

∆τ

)2)
(3)

The fermionic operators appear only quadratically, and
can be traced out analytically. The result is the product
of the determinants of two matrices Mσ, one each for spin
↑, ↓. The remaining trace over the phonon field involves a
sum over the classical variables xi(τ) indexed by the two
spatial and one imaginary time direction. This is done
via monte carlo sampling.

Because the two spin species couple in the same way
to the phonon coordinates, the matrices are identical.
Hence the product of their determinants, which gives the
weight of the configuration {xi(τ)}, is always positive.
There is no ‘sign problem’[19, 20] at any value of
the Hamiltonian parameters, temperature or density.
(Nevertheless, we limit the studies to be reported here
to half-filling ρσ = 〈niσ〉 = 1

2 .)
Should we show MFT results away from half-filling?
The principle limitations of DQMC, as with most

monte carlo simulations, are finite lattice sizes and
statistical error bars on the observables. (∆τ is chosen
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FIG. 4. The electron kinetic energies kx and ky are shown
as a function of δ. Division by the energy scales tx and ty
isolates the effect of anisotropy on the hopping.
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FIG. 5. Real space spin correlations for a moderately strained
lattice, tx = 0.5, ty = 1.5. The phonon frequency ω0 = t and
electron phonon coupling g = t. Temperature T = t/12. The
oscillating checkerboard charge density pattern persists across
the entire 8x8 lattice. preliminary

small enough so that Trotter errors associated with the
discretization of β are smaller than the statistical ones.)
One way in which finite size errors manifest in DQMC is
via the discrete set of momentum points {p}. Here we
use antiperiodic boundary conditions for lattice sizes 6×6
and 10× 10, and periodic boundary conditions for 4× 4
and 8× 8. This keeps the proportion of p points directly
on the Fermi Surface the same for all lattice sizes.

DQMC can access a wide variety of observables,
since expectation values of fermionic operators are easily
expressed in terms of matrix elements of G = M−1 and
their products. Here we focus on the kinetic energies in
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FIG. 6. Real space spin correlations for a highly strained
lattice, tx = 0.2, ty = 1.8. The phonon frequency ω0 = t
and electron phonon coupling g = t. Temperature T = t/12.
The oscillating checkerboard charge density pattern persists
in the ŷ direction only, with a pair of vertical domain wall
along y = 3 and y = 7 across which the sublattices with large
and small density interchange. lattice. preliminary
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FIG. 7. CDW structure factor versus hopping anisotropy
δ. For small δ there is a rapid growth in Scdw near the
CDW βc ≈ 6/t. For δ & 0.5 this growth becomes less
evident. Either a CDW transition does not occur, or else
its critical temperature is below those simulated. This plot
needs improvement. I am running more realizations for
β = 12, 16, 20, 24.

the x and y directions,

kx ≡
〈
− tx

∑
σ

(
d̂†i,σd̂

†
i+x̂,σ + d̂†i+x̂,σd̂

†
i+x̂,σ

) 〉
ky ≡

〈
− ty

∑
σ

(
d̂†i,σd̂

†
i+ŷ,σ + d̂†i+ŷ,σd̂

†
i,σ

) 〉
(4)
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FIG. 8. Finite size scaling analysis of the structure factor
is shown for δt = 0.4. At left, Scdw as a function of β for
different lattice sizes. At right, the scaled form L−7/4Scdw

shows a crossing which determines βc.

and on the CDW structure factor

Scdw =
〈 1

N

∑
i,j

(
ni↑ + ni↓

) (
nj↑ + nj↓

)〉
(−1)i+j (5)

where (−1)i+j = +1(−1) for sites i, j on the
same(different) sublattice.

Equal Time Correlations

The kinetic energy directly measures the effect of strain
via an anisotropic hopping in the x and y directions. We
will also display kx/tx and ky/ty to isolate the ‘trivial’
factor of the energy scales. Figure 4 shows the kinetic
energies as functions of the hopping anisotropy δ. These
evolve smoothly with δ, increasing in the ŷ direction for
which ty = 1 + δ and decreasing in the x̂ direction where
tx = 1− δ.

The real space density correlations
〈(
ni↑+ni↓

) (
nj↑+

nj↓
)〉

are given in Figs. 5 and 6. For moderate anisotropy,
δ = 0.5, the correlations seem to extend over the entire
lattice in a checkerboard pattern expected for (π, π)
ordering. For large anisotropy, δ = 0.8, the pattern is
much reduced, especially in the x̂ direction. Indeed, a
pair of domain walls appears, across which the sublattices
with high and low occupancy are reversed.

The CDW structure factor is sensitive to the
development of long range change order. In the high
temperature, disordered, phase

〈(
ni↑+ni↓

)(
nj↑+nj↓

)〉
is short ranged and Scdw is independent of lattice size N .
In the ordered phase Scdw grows linearly with N . Scdw is

shown as a function of δ for different inverse temperatures
β in Fig. 7

We do finite size scaling of Scdw to identify Tc, a task
that is considerably simplified by the knowledge that
the appropriate universality class is that of the 2D Ising
model, Insert some details. since CDW order breaks a
two-fold discrete symmetry on our square lattice[21–23].
Results are shown for δt = 0.4 in Fig. 8. Insert some
further discussion.

One might naively expect that Tc would scale as
t2/Ueff , the scale which reflects the difference between
a doubly occupied and empty site being adjacent relative
to two doubly occupied or two empty sites. The kinetic
energy measurement of Fig. 4 gives a sense of how this
quantity varies in x̂ direction. At δ = 0.5 it is lower by a
factor of roughly three, so that Tc might be expected to
be reduced by an order of magnitude from Tc ∼ t/6 in the
isotropic case. This almost certainly underestimates Tc
since it ignores the enhancement of density correlations
in the ŷ direction. Nevertheless these estimates seem
consistent with the fact that CDW order is challenging
to see at βt = 24, four times the isotropic βc.

What other DQMC plots will we show?

Spectral Function

The spectral function can be obtained from the Greens
function measurement in DQMC combined with analytic
continuation[24] to invert the integral relation

G(p, τ) =

∫
dω
e−ωτA(p, ω)

e−βω + 1
(6)

In the single site (tx = ty = 0) limit, the spectral
function is temperature (and momentum) independent
and consists of two delta-function peaks separated by
Ueff ,

A(p, ω) =
1

2

(
δ(ω +

λ2

2ω2
0

) + δ(ω − λ2

2ω2
0

)
)

(7)

The density of states N(ω) = 1/N
∑

pA(p, ω).
Following the procedure discussed in [25] one can

evaluate the moments

µ1(p) ≡
∫
dω ω A(p, ω) =

(
εp − µ ) + λ 〈X〉 (8)

µ2(p) ≡
∫
dω ω2A(p, ω) = 4(1 + δt2)t2 − λ4

ω4
0

+ 2
λ4

ω4
0

〈P〉

Here 〈X〉 is the phonon displacement on a spatial site,
and is related to the density by 〈X〉 = x∗ = −λ〈n〉/ω2

0 .
〈P〉 is the phonon potential energy. At half-filling,
〈n〉 = 1 and µ = Ueff = −λ2/ω2

0 so that µ1(p) = εp.
(This is the same as for the noninteracting case, since
there A(p, ω) = δ(ω − εp).) These analytic values of
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FIG. 9. Density of states for the isotropic lattice for different
inverse temperatures β. The phonon frequency ω0 = t and
electron-phonon coupling λ =

√
2 t. Finite size scaling of Scdw

suggests βc t = 6.0± 0.1 [26].
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FIG. 10. Density of states comparing the isotropic lattice with
small (δ = 0.3) and large (δ = 0.9) anisotropy. For δ = 0.9
the opening of a gap is delated until βc t ∼ 20.

the moments, in combination with a measurement of the
phonon potential energy, serve as a useful check on the
analytic continuation.

This result needs to be checked. The second moments
do not agree with what is coming out of Anders’ maxent
code.

Figure 9 shows the density of states N(ω) for the
isotropic lattice. At inverse temperatures β t = 2, 3, 4, 5
lower than βct, N(ω) has a peak at the Fermi level
ω = 0. Beginning at the critical inverse temperature,

0
ω

0

0.2

0.4

A
(q

x
,q

y
,ω

)

(0,5) new

(5,0) new

ω=1  g=1  t
x
=0.7  t

y
=1.3

N=8x8  ∆τ=0.125  β=8

FIG. 11. A first attempt. Notice A(px, py, ω) =
A(py, px,−ω). Natanael saw this as well for dispersionful
phonons. I do not understand it. I expected the peak in
A(5, 0, ω) to be shifted closer to ω = 0 than A(0, 5, ω) to
reflect the smaller bandwidth in the x direction.

inferred finite size scaling of Scdw[26], N(ω) develops a
gap which provides another indication of the transition
to the insulating CDW phase. N(ω) remains relatively
unchanged under the influence of strain δt = 0.3, Fig. ,
consistent with the robust Scdw of 7 at modest anisotropy.
However, at δt = 0.9 the CDW gap has been replaced by
a weak minimum at β t = 8 and is only recovered at
β t = 24.

WhileN(ω) gives information about the CDW gap, the
momentum-resolved spectral function A(p, ω) yields the
effect of (strain) hopping anisotropy on the quasiparticle
dispersion. Figure 11 shows A(p, ω) versus ω) for several
different points in the Brillouin zone. Actually, to make
Figs. 11 and 12 more distinct, it might maks sense to
show A(p, ω) at fixed p and different δt in the former.
Figure 11 exhibits the quasiparticle dispersion relation.
Maybe it would be good to show several values δt =
0.0, 0.3, 0.9. If yes, Fig. 11 might just be superfluous.

Transition Temperature

Before presenting the results for the effect of anisotropy
on the transition temperature Tc we recall the behavior
of Tc for the related problem of the 2D Ising model with
Jx 6= Jy. The Onsager solution is

(9)

Natanael or Ben- complete this discussion. That Tc
is non-zero for all Jx/Jy is consistent with the general
expectation that anisotropy in the form of a weak
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FIG. 12. This is an old figure of Natanael’s for the
dispersionful-phonon project. We want the analog for strain.

coupling in one direction does not destroy a finite
temperature second order phase transition in dimension
d. The rough physical picture is that correlations will
develop in the ‘strongly interacting’ directions out to
a length ξ. The coordinated orientation of degrees
of freedom in regions of size ξd−1 then create a large
‘effective’ coupling Jeff ∼ ξd−1Jsmall in the weakly
interacting direction. As ξ grows Jeff eventually boosts
Jsmall. Our naive expectation, then, is that Tc for our 2D
anisotropic Holstein model should be non-zero for all δ.
This is substantiated by the MFT results of Fig. 3.

However, Fig. 7, however, would seem to cast doubt
on a CDW transition at large strain. Even at β t = 24,
Scdw is less than 1/20 of its value for perfect (no quantum
or thermal fluctuation) charge order. Iniitial insight into
this is provided by the MFT treatment. From Fig. 2 we
can infer the order parameter x1 ≈ XX. Since Scdw →
Nx2

1 in the thermodynamic limit we see MFT predicts
this small value of the structure factor as a reflection of
a small order parameter. The behavior of N(ω) provides
more definitive evidence of the persistence of the CDW
insulating phase even at high strain. Despite the small
value of Scdw, the density of states has a clear gap at
δt = 0.9 at low temperatures (Fig. ).

CONCLUSIONS

While we have focussed here exclusively on using
DQMC and MFT to understand the effects of anisotropic
electron hopping tx 6= ty on charge correlations
and the gap in the Holstein model, it is also
possible to examine the role of changes in the phonon
spectra. Indeed, DFT calculations[2] indicate that such
changes, e.g. enhancement of the phonon frequency
with compression, are central to the onset of CDW
order. Similarly, it is known from DQMC simulations
that Tc exhibits a non-monotonic dependence on λD =
λ2/(ω2

0 W ) in the Holstein Hamiltonian[22]. However,

the possibility of direct connection of such model
calculations to materials would require the introduction
of an ad hoc connection of ω0 (and λ) to strain.

While applications of DQMC to Hamiltonians with
repulsive electron-electron interactions are limited by the
sign problem[19, 20], study of Holstein or Su-Schrieffer-
Heeger models with electron-phonon interactions are
much less restricted. As seen here, and in other work[21–
23], low enough temperatures can be reached to get
a complete understanding of the CDW transition, and
even of the possibility of quantum critical points[22, 23]
associated with CDW transitions driven by changes in
λD at T = 0. Recent work has further exhibited this
flexibility of DQMC by examining the effects of phonon
dispersion on CDW order in the Holstein model[26].
In short, the freedom from the sign problem opens
the door to incorporating additional materials details
into quantum simulations of electron-phonon models and
hence to the study of CDW transitions. Such rich details
are much more difficult to include in studies of repulsive
electron-electron interactions like the Hubbard model for
which the sign problem is severe.
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FIG. 13. Density of states for small t. It does not seem
to match the analytic t = 0 form which implies two delta
function peaks at ω = ±λ2/ω2.

SUPPLEMENTAL MATERIALS

Placing some additional results here for further
analysis later.

Figure 13 is a check of the t = 0 result for the spectral
function

A(ω) =
1

2

(
δ(ω +

λ2

2ω2
0

) + δ(ω − λ2

2ω2
0

)
)

(10)

Do I have a factor of two wrong? The DQMC results
peaks are twice as far from the origin as the exact
expression. On the other hand, I like the fact that the
peaks are separated by Ueff since for the Hubbard model
they are separated by U . Ben should check.


