C PROGRAMMING: MORE TESTING RANDOM NUMBER GENERATORS

Another test of pseudo random numbers is to compute their "moments". These are defined by

$$
\begin{aligned}
& m_{1}=\frac{1}{N}\left(r_{1}+r_{2}+r_{3}+r_{4}+\cdots+r_{N}\right) \\
& m_{2}=\frac{1}{N}\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+\cdots+r_{N}^{2}\right) \\
& m_{3}=\frac{1}{N}\left(r_{1}^{3}+r_{2}^{3}+r_{3}^{3}+r_{4}^{3}+\cdots+r_{N}^{3}\right) \\
& m_{4}=\frac{1}{N}\left(r_{1}^{4}+r_{2}^{4}+r_{3}^{4}+r_{4}^{4}+\cdots+r_{N}^{4}\right)
\end{aligned}
$$

In other words, to get the p th moment you raise each number to power p and then average. On page two is a program to compute the first six moments. Type it in and run it. Use 1000000 random numbers. What do you get for the moments? Do you see any pattern?

Comments:

[1] Can you prove the pattern? (This is really a calculus problem.)
[2] At the beginning of the week we discussed computer speeds and suggested a computer could do about 10^{9} operations per second. Is this estimate consistent with the performance of your code?
[3] Actually, you can define the moments of any distribution of numbers, not just our random numbers which are uniform on $[0,1]$. We will not go into that here.

```
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
int main(){
    srand(time(NULL));
    int i,N;
    double R,sum1=0.,sum2=0.,sum3=0.,sum4=0.,sum5=0.,sum6=0.;
    printf("Enter the number of random numbers used ");
    scanf("%d",&N);
for(i=0;i<N;i++)
{
R=(double)rand()/RAND_MAX;
sum1=sum1+R;
    sum1=sum1+R;
    sum2=sum2+R*R;
    sum3=sum3+R*R*R;
    sum4=sum4+R*R*R*R;
    sum5=sum5+R*R*R*R*R;
    sum6=sum6+R*R*R*R*R*R;
}
printf("%lf\n",sum1/N);
printf("%lf\n",sum2/N);
printf("%lf\n",sum3/N);
printf("%lf\n",sum4/N);
printf("%lf\n",sum5/N);
printf("%lf\n",sum6/N);
}
```

