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The Molecular Dynamics Method II: Satellite Motion

In MD-1 you learned the basics of Molecular Dynamics (MD). Here we will do a problem in

two dimensions using the gravitational force law (instead of a spring force). To allow motion

in 2D we need to keep track of two coordinates x, y, as well as the velocities in the x and y

directions: vx and vy

Newton’s law of gravity says that the force between any two masses M and m has size

F = GMm/r2 were r is the distance between the masses and G is a constant whose value

is G = 6.67 ∗ 10−11 (if masses are measured in kilograms and r in meters). The direction of

the force is along the line connecting the masses and is attractive.

We will consider the motion of a satellite (mass m) around the earth (mass M). Since the

earth is so big, we will assume it is stationary at the origin. A little geometry then allows

us to get the pieces (components) of the force in the x and y directions:
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So now the heart of an MD code for a satellite going around the earth is this:

x=x+vx*dt

y=y+vy*dt

r=sqrt(x*x+y*y)

vx=vx-(G*M*x/r^3)*dt

vy=vy-(G*M*y/r^3)*dt

t=t+dt

Why did the 1/r2 in our formula for F become x/r3 ? (Hint: See the Figure and the

comment on similar triangles.) What happened to the mass of the satellite m?

Your challenge is write a complete MD code for this problem. One thing you will need to

do is look up the mass of the earth. You will also need to figure out some reasonable initial

conditions which will keep the satellite from escaping the earth completely or crashing to the

surface of the earth. A fact that might help you is that a circular orbit of radius r around

a mass M is achieved with a velocity v =
√

GM/r.

The time it will take a satellite to do one circular orbit of radius r is the distance travelled,

d = 2πr, divided by the velocity v =
√

GM/r. Use this fact to compute the radius of a

geosynchronous orbit (one whose period T is equal to one day). Check your answer against

the value given by wikipedia.

A tricky point concerns how big dt can be. In MD-1 we emphasized that dt had to be

“small”. This was actually an imprecise statement, because we really need to specify “small

compared to what”? The answer is “small compared to the period of the motion”: in this

case, the time it takes the satellite to circle the earth. So if you do a geosynchronous orbit, dt

should be small compared to one day (T = 86, 400 seconds). Thus dt = 10 or even dt = 100

is “small” compared to 86,400.

Challenge! The astronomer Kepler, in accumulating data for the distances of planets from

the sun and their periods, noticed an amazing pattern: when he computed r3/T 2 he got

nearly the same number for all the planets, even though their radii r and periods T were

wildly different. First, verify this statement is true by completing the following table:
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Planet Distance from Sun R Length of Year T ⇒ R3/T 2

(miles) (seconds)

Mercury 36,000,000 8,000,000 808,000,000

Venus 67,000,000 19,400,000 800,000,000

Earth 93,000,000 31,500,000 811,000,000

Mars 140,000,000 59,000,000

Jupiter 480,000,000 370,000,000

Saturn 890,000,000 930,000,000

Uranus 1,800,000,000 2,700,000,000

Neptune 2,800,000,000 5,200,000,000

Pluto 3,650,000,000 7,800,000,000

I have used the units of miles and seconds in the table above. Get the constant value instead

if you use meters and seconds. Then prove Kepler’s rule from the discussion relating the

radius, velocity, and period of circular orbits and get a formula for the constant. Does it

agree with observations of the solar system? (Remember to use the mass of the sun in the

formula you derive, not the mass of the earth!)

It is important to close this discussion by emphasizing that Kepler’s observations were what

led Newton to his formula F = GMm/r2 for the force of gravity. Newton realized that a

1/r2 formula (and no other!) would make r3/T 2 constant and allow him to explain Kepler’s

data. This is an interesting illustration of how science works.


