C PROGRAMMING: COMPUTING FACTORIALS

We wrote a program to compute the sum of the first N integers. How about this for the product of the first N integers:

```
/* this is a program to multiply the first N integers*/
#include <stdio.h>
#include <math.h>
int main(void)
{
int prod=1;
int j, N;
printf("Enter N");
printf("\n");
scanf("%i",&N);
printf(" j j! ");
for (j=1; j<N; j=j+1)
{
prod=prod*j;
printf("\n %i",j);
printf(" ");
printf("%20i",prod);
}
printf("\n");
return 0;
}
```


Comments:

[1] What is the product of the first N integers called? Answer: N !, read ' N factorial'.
[2] In what context(s) have you encountered factorials? Possible answer: binomial coefficients. If we define

$$
\binom{N}{k}=\frac{N!}{(N-k)!k!}
$$

then

$$
(a+b)^{N}=\sum_{k=0}^{N}\binom{N}{k} a^{N-k} b^{k}
$$

Note that 0 ! is defined to be one. We will use factorials quite a bit in the coming weeks.
[3] In-class Exercise One: Evaluate $\binom{3}{2},\binom{7}{4}$, and $\binom{5}{0}$.
For the last one you will need to use $0!=1$.
[4] In-class Exercise Two: Compute

$$
\binom{2}{0}+\binom{2}{1}+\binom{2}{2}
$$

Compute

$$
\binom{3}{0}+\binom{3}{1}+\binom{3}{2}+\binom{3}{3}
$$

Compute

$$
\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}
$$

What pattern do you notice? Can you prove it?!

