
1

C PROGRAMMING: RANDOM NUMBER GENERATION

We’re about to start the core of our cluster: random walks. We first need to learn how to

generate random numbers. Some people object to calling numbers random when they are

generated with a computer code which has definite steps. These people prefer the name

pseudo-random numbers. I’m not sure it’s such a big deal, really. After all, you could make

a similar objection to calling a coin toss or die roll a random process, since, really, the motion

of a spinning coin or die is completely determined by Newton’s laws of motion and so the

outcome is not really random either.

We will look at two random number generators. The first is not as good a generator. (There

are various tests of how ‘random’ the generator really is, and the first one scores less well

on these tests.) It has the virtue however that you can see exactly what it is doing. The

second is better, and it’s the one we will therefore use. However, it is a ‘black box’: we just

call some code someone else wrote and we cannot peak inside. So it’s good to start with the

more open one.

The first code, on page two, generates (pseudo) random numbers this way: you enter a seed

integer i to start the process. Then you multiply i by 75 and calculate the remainder when

it is divided by 231
− 1. Finally, you divide the result by 231

− 1. (In the last step, make

sure you do this as real number arithmetic and not as integer arithmetic. This is why the

code has separate variables M and rM .) That is

i = 75
∗ i

i = i % (231
− 1)

i = i/(231
− 1)

To get another random number you repeat the process using your new i as the seed for the

next step. You can continue this process as long as you like. Well, not really: Eventually

the (pseudo) random numbers start to repeat. This is one reason this generator is not such

a good one. In fact, can you see the maximum number of different number of randoms that

can be generated with this algorithm? Hint: Think about how many possible remainders

you can get when you divide by something.

2

/* linear congruential random number generator */

#include <stdio.h>

#include <math.h>

int main(void)

{

double r,rM;

long unsigned int a,b,i,M,j,N;

printf("\nEnter seed");

printf("\n");

scanf("%i",&i);

printf("\nEnter number of iterations");

printf("\n");

scanf("%i",&N);

a=7*7*7*7*7;

M= 2*2*2*2*2*2*2*2;

M=M*2*2*2*2*2*2*2*2;

M=M*2*2*2*2*2*2*2*2;

M=M*2*2*2*2*2*2*2 -1;

rM=M;

for (j=0;j<N;j=j+1){

i=a*i;

i=i%M;

r=i;

r=r/rM;

printf("\n%12.8lf",r);

}

printf("\n");

return 0;

}

Comments:

[1] Type in the code and generate 20 random numbers to see what they look like.

3

/* This program generates N random numbers between 0 and 1 */

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

int main(){

srand(time(NULL));

int i,N;

double R;

printf("Enter the number of random numbers you want ");

scanf("%d",&N);

for(i=0;i<N;i++)

{

R=(double)rand()/RAND_MAX;

printf(" %lf\n",R);

}

return 0;

}

[2] This random numer generator uses the computer’s clock to provide a seed. Hence the

need for the extra header file ‘time.h’.

[3] Type in the code and generate 20 random numbers to see what they look like.

[4] Our random numbers are uniform on [0, 1]. That is they obey 0 < r < 1 and the r are

equally likely to be anywhere in the interval. There are other random number generators

one can construct, but this is the most common type.

