
1

HOW NUMBERS ARE STORED

Run your arithmetic series sum program for N = 1000. Does everything look fine? Now

run it for N = 65550. What do you notice happening!?

The program is pooping out at 65536. Does anyone recognize this number? Since we

are dealing with computers, it’s good to think about powers of 2. Let’s start with 210 =

1024. Continuing with powers of 2, we get 1024, 2048, 4096, 8192, 16384, 32768, 65536.

This program is going haywire precisely at 216. To understand why, we need to figure out

how computers store numbers.

Let’s start by reviewing base 10. It’s like going back to elementary school. What do we

mean by the number 4567? Well, 4567 is shorthand for four thousands, five hundreds, six

tens and 7 ones. In other words,

4567 = 4 ∗ 103 + 5 ∗ 102 + 6 ∗ 101 + 7 ∗ 100

Notice here I used 100 = 1, which makes the pattern clear.

Base 10 uses ten different symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The basic idea is that when we

run out of symbols we need to start using two digit numbers: 10, 11, 12, 13, ...

Base 2 is the same idea. We are only going to use two symbols: 0, 1 Why? (Answer:

computers store information with little magnets. The north pole can be up or the down

pole can be up. There are only two choices, so only two “symbols”.) So in base two, the

only one digit numbers are 0, 1. To count higher, we need to start using more digits. We

count in base 2 thusly: 0, 1, 10, 11, 100, 101, 110, 111, 1000, · · · .

In analogy with base 10

10 = 1 ∗ 21 + 0 ∗ 20 = 2 (in base 10)

11 = 1 ∗ 21 + 1 ∗ 20 = 3 (in base 10)

100 = 1 ∗ 22 + 0 ∗ 21 + 0 ∗ 20 = 4 (in base 10)

101 = 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 5 (in base 10)

110 = 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 6 (in base 10)

So counting in base 2: 0, 1, 10, 11, 100, 101, 110, 111, 1000, · · · . is the same as base 10:

0, 1, 2, 3, 4, 5, 6, 7, 8, · · · .



2

We are now almost in a position to see why we get in trouble at 65536. Think about

the biggest numbers you can store with certain numbers of digits in base 2. With 1, 2,

3, 4, 5 digits, the largest numbers are 1, 11, 111, 1111, 11111. (These are the analogs of

9, 99, 999, 9999, 99999, the largest numbers you can store with 1, 2, 3, 4, 5 digits in base 10.)

Convert the largest base 2 numbers to base 10. You get 1, 3, 7, 15, 31. Do you recognize the

pattern? These are 2n
− 1, that is 2 − 1, 4 − 1, 8 − 1, 16 − 1, 32 − 1 where 2, 4, 8, 16, 32 are

powers of 2.

When you declare a variable to be an integer, the compute allocates 16 bits to store. The

largest integer is then 216
− 1, and your computer starts getting into trouble at 216 = 65536.

So now we understand whats going wrong with your arithmetic series program.

[1] Are there ways to fix this? Are there data types that can count higher? (Answer: use

long long int sum;

When you do this, you need to read things in and write tthem out with the appropriate

format, eg:

scanf("%Ld",&N);

printf("%20Ld",sum);


