
Even and Odd numbers

This is a summary of yesterday’s introduction of the mod function (%).
In C, the function % gives us the remainder. For example:

8%5 = 3, when we divide 8 by 5, there are 3 remainder

10%3 = 1, when we divide 10 by 3, there is 1 remainder

There is a special case of no remainder, as then one number fits exactly into
another. If we divide a by b and have no remainder, we say that b divides a
or that b is a factor of a.

For example, 3 divides 12 (or 3 is a factor of 12) because 12/3 = 4 with
no remainder, but 5 does not divide 12 because 12/5 = 2 remainder 2. We
can also write this as

12%3 = 0, 12%5 = 2

Yesterday we determined that a number was even if is was divisible by 2,
otherwise it was odd. That is, if N is our number, there were two cases:

N%2 =

{
0 N divisible by 2, so N is even

1 N not divisible by 2, so N is odd

We then were in a position to write a program (on the reverse side of this
page) that checked if a number N was even. Our attack was

1. Ask the user for a number, store the result in N

2. Check if N%2 is zero

(a) If N%2 == 0 (remember two equals signs makes a question in C!)
then tell the user their number is even

(b) If N%2! = 0 tell the user their number is odd

The two separate parts a) and b) suggest using an if/else statement.

1

1 #inc lude <s t d i o . h>
#inc lude <math . h>

3

i n t main () {
5 //This i s where we w i l l s t o r e the user ’ s input

i n t N;
7

//Ask the user f o r a number (t h i s l i n e p r i n t s to the s c r e en
only)

9 p r i n t f (” Please ente r a number f o r check ing \n”) ;
//This l i n e a c t ua l l y wait s f o r the number , and s t o r e s i t in N

11 s can f (”%i ” , &N) ;

13 //Check i f N i s even
i f (N % 2 == 0) {

15 //This b lock execute s i f N % 2 == 0 i s t rue
// Note that the % in scan f / p r i n t f i s NOT the math op mod

17 p r i n t f (”Your number %i i s even\n” , N) ;
} e l s e {

19 //This b lock execute s i f N % 2 == 0 i s f a l s e
p r i n t f (”Your number %i i s odd\n” , N) ;

21 }

23 re turn 0 ;
}

even.c

Please read through and understand what this code is doing – you will
be making changes to this code to accomplish different tasks this morning.

2

Is the number N divisible by d?

Warm up
Make a copy of even.c, and call it mod3.c. Change mod3.c so it tells you
whether or not the number you enter is divisible by three.

Divisibility
Make a copy of even.c, and call it divisible.c. Here is what we want the
program to do:

1. Get a number N to check

2. Get a number d to divide by

3. Your program should tell you whether or not N is divisible by d (or if
d is a factor of N)

A sample run might look something like this (user input in bold)

Please enter a number you wish to check for factors
21
Please enter a suspected factor
7
7 is a factor of 21

The same program taking different inputs from the user might look like the
following

Please enter a number you wish to check for factors
21
Please enter a suspected factor
6
6 is not a factor of 21

3

Is the number N prime?

Counting factors
Make a program factor.c by either copying an existing program, or starting
fresh. Your program’s task is to count the number of factors of the inputed
number. For example:

1. If N = 21 take your we would see that 21 can be divided by 1, 3, 7,
and 21. Your program would return 4, as 21 is divisible by 4 numbers.

2. If N was 30, we would see that N can be divided by 1,2,3,5,6,10,15,30.
Your program would return 8, as 30 is divisible by 8 numbers.

Here is a few hints:

1. Introduce a new variable factor that keeps track of how many factors
of N you have found.

2. We know that the factors of N all lie between 1 and N (including 1
and N). Loop though each number from 1 to N , and if it is a factor
add one to factor.

3. Once you have looped through all possibilities, report the number of
factors.

An example of your program running would be

Please enter a number you wish to check for factors
21
21 has 4 factors

Extension
You should be able to alter your program slightly to check if the number N
is prime. Recall a number is prime if its only factors are 1 and itself.

4

NIM – a simple game

In this program, our goal is to have a collection of sticks (say 9), and the
rules are that each player may take 1, 2, or 3 sticks on their turn. The person
that takes the last stick loses. Here would be a sample game:

Setup : (9 sticks remaining)
Turn #1: Player # 1 takes 2 sticks (7 sticks remaining)
Turn #2: Player # 2 takes 1 stick (6 sticks remaining)
Turn #3: Player # 1 takes 3 sticks (3 sticks remaining)
Turn #4: Player # 2 takes 2 sticks (1 sticks remaining)
Turn #5: Player # 1 takes 1 stick (0 sticks remaining)

So in this game, Player #1 would lose.

We will write this program together as a class, but first we are going to
spend some time thinking about it.

1. The first thing to do is get a “feeling” for the game. Play a game with
each person sitting around you.

2. After playing the game a few times, think about what the computer is
going to have to keep track of. Make a list and compare it to people
around you.

3. Can you identify some of the things our program is going to need to
do? How is it going to check whose turn it is? How will it check if
the game is over? Come up with suggestions (you may find that your
solutions need you to keep track of things you had not thought of in
the previous step)

4. Look at your list of solutions and variables to keep track of, and com-
pare with your neighbor. We are now in a good position to start pro-
gramming!

5

