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Introduction to DMC

➽ Ground state is obtained by projection from trial wavefunction ΨT (R):

ΨGS(R) = lim
t−→∞

e−tHΨT (R) = e−τH e−τH . . . e−τHΨT (R)

R is a 3N dimensional vector and H is Hamiltonian of system.
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Introduction to DMC

➽ Ground state is obtained by projection from trial wavefunction ΨT (R):

ΨGS(R) = lim
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e−tHΨT (R) = e−τH e−τH . . . e−τHΨT (R)

R is a 3N dimensional vector and H is Hamiltonian of system.

➽ Direct approach is extremely inefficient and not stable . . . sign problem!

➽ Fixed node approximation: Use the nodes of a trial wave function as a boundary

condition
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Stable solution:

✔ exact if nodes are exact

✔ variational if nodes are ap-

proximate

Find the best trial WF! VMC optimization
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Trial wavefunctions in DMC

➽ Slater type:

ΨT (R) =
ndet
∑

i

ci D↑
i D↓

i

ci are CI coefficients, and D↑
i and D↓

i are spin-up and spin-down determinants

R = (~r1,~r2, . . . ,~rN) 3N-dimensional vector.
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Trial wavefunctions in DMC

➽ Slater type:

ΨT (R) =
ndet
∑

i

ci D↑
i D↓

i

ci are CI coefficients, and D↑
i and D↓

i are spin-up and spin-down determinants

R = (~r1,~r2, . . . ,~rN) 3N-dimensional vector.

➽ Slater-Jastrow type:

ΨT (R) = eJ(R)
∑

ci D↑
i D↓

i

J(R) = Jee + Jen + Jeen + . . .

J(R) introduces 1-body, 2-body, 3-body, . . . correlations. Forces ΨT (R) to satisfy

cusp conditions.

➽ J(R, {α}) is parametrized. {α} = {αee, αen, αeen} and CI coefficients are

optimized with VMC

➽ Slater-Jastrow type works well for molecular systems and solids.
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Trial wavefunctions in DMC (periodic systems)

➽ Jastrow factors suitable for isolated systems are short ranged!

➽ long-range Jastrow correlations: Prendergast, Bevan, Fahy PRB ’02

JLR(R) = J
(1)
LR + J

(2)
LR

J
(1)
LR =

∑

stars

nelec
∑

i

ps cos
(

~k · ~ri

)

+ qs sin
(

~k · ~ri

)

J
(2)
LR =

∑

stars

nelec
∑

i,j

rs cos
[

~k · (~ri − ~rj)
]

rs, ps, and qs are variational parameters optimized with VMC.
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Trial wavefunctions in DMC (periodic systems)

➽ Jastrow factors suitable for isolated systems are short ranged!

➽ long-range Jastrow correlations: Prendergast, Bevan, Fahy PRB ’02

JLR(R) = J
(1)
LR + J

(2)
LR

J
(1)
LR =

∑

stars

nelec
∑

i

ps cos
(

~k · ~ri

)

+ qs sin
(

~k · ~ri

)

J
(2)
LR =

∑

stars

nelec
∑

i,j

rs cos
[

~k · (~ri − ~rj)
]

rs, ps, and qs are variational parameters optimized with VMC.

➽ For one-body J
(1)
LR all stars consistent with the point group of the crystal are included:

✔ non-inversion symmetry case

✔ symmorphic and non-symmorphic cases
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Silicon interstitials (preliminary)
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Short range Jastrow 

✔ DMC study using CHAMP by Batista and coworkers PRB ’06

✔ (16 +1) atom supercell- (64 + 4) electrons. Three kinds of interstitials H, T and X

✔ variance reduction: From σ2 = 0.8 to σ2 = 0.6 Hartree2

✔ smaller locality error, efficient simulation, . . .

6



Trial wavefunctions in DMC

➽ Slater type:

ΨT (R) =
ndet
∑

i

ci D↑
i D↓

i

➽ Slater-Jastrow type:

ΨT (R) = eJ(R)
∑

ci D↑
i D↓

i

J(R) = Jee + Jen + Jeen + . . .

J(R) introduces 1-body, 2-body, 3-body, . . . correlations.

➽ For solids, Slater-Jastrow with periodic long-range correlations:

JLR(R) =
∑

s

nelec
∑

i

[

ps cos
(

~k · ~ri

)

+ qs sin
(

~k · ~ri

)]

+
∑

s

nelec
∑

i,j

rs cos
[

~k · (~ri − ~rj)
]

➽ With a single determinant, all these WFs have same nodes!

all DMC energies should be the same
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backflow transformations

Feynman-Cohen backflow (liquid He II): Phs. Rev. ’56

excited-state WF with an excitation of momentum ~q:

∏

i

ei~q·~riφ0 −→
∏

i

ei~q·~xiφ0

where ~xi = ~ri +
∑

j 6=i η(rij)~rij
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backflow transformations

Feynman-Cohen backflow (liquid He II): Phs. Rev. ’56

excited-state WF with an excitation of momentum ~q:

∏

i

ei~q·~riφ0 −→
∏

i

ei~q·~xiφ0

where ~xi = ~ri +
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➽ In Fermionic systems, backflow transformations modify the nodes

➽ Applied to the Fermionic homogeneous electron gas [Schmidt PRL ’81]

➽ Generalized to inhomogeneous systems [Rios PRE ’06]

~xi = ~ri +
∑

j 6=i

η(ri, rj , rij)~rij +
∑

j 6=i

ξ(ri, rj , rij)~ri
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➽ backflow is highly desirable in solids

➽ implemented in champ and applied to molecular systems and quantum dots
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VMC energies of first row atoms (preliminary)
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Quantum dots

☞ Quantum dots are very similar to atoms (artificial atoms)

H =
∑

i

(

−
1

2
∇i

2 +
1

2
ω2r2

i

)

+
∑

i 6=j

1

|ri − rj |

☞ Highly tunable systems (vary ω)— strongly correlated physics (Wigner crystallization)
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Quantum dots

☞ Quantum dots are very similar to atoms (artificial atoms)

H =
∑

i

(

−
1

2
∇i

2 +
1

2
ω2r2

i

)

+
∑

i 6=j

1

|ri − rj |

☞ Highly tunable systems (vary ω)— strongly correlated physics (Wigner crystallization)

Electron density:

Ω=0.0015625 Ω= 0.0005 Ω=0.0001
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qdots with backflow

N = 7 and w = 0.0015625
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qdots with backflow

N = 7 and w = 0.0015625
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Where are we?

1. Brief review of diffusion Monte Carlo

2. Trial wave functions?

3. Long range periodic Jastrow

☞ silicon intersteials

4. backflow transformations:

☞ First row atoms

☞ Quantum dots

5. Towards MnO . . .

☞ Pseudopotentials validation

☞ HF or GGA pseudopotentials
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Study of anti-ferromagnetic MnO (preliminary)

✔ AF FCC structure: Mn moments anti-parallel along adjacent sheets in the [111] plane

✔ Experimentally:

✒ First-order insulator-metal transition near 100 GPa

✒ volume collapse by ≈ 5% equilbrium volume

✒ moment collapse: 5 −→ 1 bohr magneton

✔ Rich physics Cohen Science ’97, Kasinathan PRB ’06, Kunes Nature materials ’08
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All-electron equation of state (preliminary)

Calculations done with GGA/PBE using WIEN2k
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Non-magnetic

Ferromagnetic anti-ferromagnetic

✔ Three different phases of MnO (FCC structure)

✔ AFM phase is the ground state under ambient pressures

✔ volume collapse in AFM phase for high pressures
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Magnetic and volume collapse (all-electron) (preliminary )
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high-spin to low-spin transition (5/2 −→ 1/2) Kasinathan PRB ’06,
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Towards a DMC of MnO

✔ Which pseudopotentials to use?

✕ Wide spread belief that HF pseudopotentials are better than DFT ones in QMC

✕ HF pseudopotentials are cleaner in descreening step (DFT fixed by NLCC)

✕ Limited experience shows that HF and GGA PsP are okay but not LDA one

✕ OPIUM can generate HF and DFT pseudopotentials Al-Saidi, Walter and Rappe

PRB’08

✕ small core pseudopotentials
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Towards a DMC of MnO

✔ Which pseudopotentials to use?

✕ Wide spread belief that HF pseudopotentials are better than DFT ones in QMC

✕ HF pseudopotentials are cleaner in descreening step (DFT fixed by NLCC)

✕ Limited experience shows that HF and GGA PsP are okay but not LDA one

✕ OPIUM can generate HF and DFT pseudopotentials Al-Saidi, Walter and Rappe

PRB’08

✕ small core pseudopotentials

✔ What kind of trial WF?

✕ We want to optimize the orbitals

✕ For high pressures, GGA trial wavefunctions will be okay

✕ Near the equilibrium geometry, LDA+U (or HF) might be best

17-a



Non magnetic phase (preliminary)
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✔ Excellent agreement between all-electron and pseudopotential results
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AFM magnetic phase (preliminary)
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✔ pseudopotential equilibrium volume is ≈ 1 % smaller than all-electron one

✔ Birch-Murnaghan B0 and B0′ are also in excellent agreement

✔ pseudopotentials do not seem to give a volume collapse????
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AFM magnetic phase (aligning equilb. positions)
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✔ High pressures, larger deviations between pseudopotential and all-electron

✔ change in magnetic properties of system

✔ similar behavior has been seen by Kolorenc and Mitas PRB ’07
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Cornell University

Summary

✔ Most general long-range periodic Jastrow factor for solids

✔ Backflow transformations:

➽ atoms and molecules

➽ quantum dots

➽ solids . . . easily implemented

✔ Investigating different pseudopotentials for our MnO study

✔ Future work

➽ orbital optimization for solids

➽ finite-size correction scheme

al-saidi@cornell.edu
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