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• Part 1 Accurate C2 potential energy curve (PEC) with truncated CASSCF trial WF:
ground & excited states

– C2 ground state is magnetic and nontrivial due to low-lying excited states (Abrams & Sherrill,

JCP 2004; Umrigar et al., PRL 2007)

– Much interest in developing methods for accurate excited states.

– Magnetic systems such as MnO requires accurate treatment of spin.

– Removing spin contamination in trial WFs: F2 molecule

– Realistic basis results for C2.

• Part 2 MnO calculation with AFQMC: preliminaries
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PART 1—C2 Molecule: Challenge for Accurate PECs

C2 is a complicated molecule:

• strongly correlated

• ground state is antiferromagnetic

• low-lying excited states

• level crossings

• C2 electronic states show strong

multireference character (g.s.

contains only∼ 70% RHF).
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Difficulty of Ground State Calculations

Nonparallelity error (NPE) of ground state

PECs,r = 0.9 − 3.0 Å.

Method NPE (mHa)

RHF 212

UHF 78

MP2 130

RCCSD(T) 98

UCCSD(T) 34

CISD 116

CISDT 51

CISDTQ 26
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• NPE is worse for excited states.

• Accurate PEC calculation requires method that works in strong correlation regime.
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Auxiliary-Field Quantum Monte Carlo
Task: find the ground state of a many-body Hamiltonian in second-quantized form

Ĥ = K̂ + V̂

Use iterative projection from a trial solution|Ψ
T
〉

e−τĤe−τĤ · · · e−τĤ |ΨT〉 = |Φ0〉 ;

e−τĤ ≈ e−τK̂e−τV̂ (τ → 0+)

One-body term: e−τK̂ |φ〉 → |φ′〉 |φ〉 = Slater determinant

Two-body term→ sum of the square of one-body operators:

V̂ =
∑
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Ground-state projection→ a high-dimensional integral→ random walk in|φ〉:

|φ′〉 =

∫

dσσσ P (σσσ) e−τĥ(σσσ) |φ〉
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Phaseless AFQMC

• Reason:Complex-valuede−τĥ(σσσ) leads to severe fluctuations in the phase of|φ〉 .

• Phaseless approximation:Constrain the random walk with the trial wave function:1

– Importance sampling:|Φ0〉 =
∑

φ

wφ

|φ〉
〈Ψ

T
|φ〉 .

– Weightwφ be real all the time.

– Restrict phase rotation in〈Ψ
T
|φ〉 to avoid circling around complex-phase origin:

θ ≡ arg

(〈Ψ
T
|φ′〉

〈Ψ
T
|φ〉

)

wφ′ ∝ wφ max(cos(θ), 0)

• Method is not variational, but gives excellent approximation of the ground state.

1 S. Zhang and H. Krakauer, PRL (2003)
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Getting the Spin Right: Spin Contamination Problem

We typically deal with spin-independent electronic Hamiltonian:

[Ĥ, Ŝ2] = 0

Nondegenerate eigenstates must have definite spin states, i.e. they are also eigenstates of the

total electronic spin̂S2.

Wave functions that are not eigenstates ofŜ2 are said to bespin contaminated.
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Getting the Spin Right: Spin Contamination Problem

[F2 triplet PEC: Cartwright and Hay, JCP (1979)]

Some “singlet” WFs are not spin pure

(most notably, UHF):

|UHF〉 = cs|Ψs〉 + ct|Ψt〉 + . . .

Ideal AFQMC projection of|UHF〉
would lead to exact ground state:
(

e−τĤ
)n

|UHF〉 → C|Φs
0〉+O(e−nτ(Et

0
−Es

0
))|Φt

0〉

Phaseless AFQMC modifies the

projection; this

can lead to spin-contaminated solution:
(

e−τĤ
)n→∞

|UHF〉 → Cs|Φs
0〉 + Ct|Φt

0〉 + . . .

especially if there are nearby triplets!
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Removing Spin Contamination in AFQMC

Idea: Start the projection with a singlet-spin-pure population{ |φs〉 }

• Each AFQMC walker is a Slater determinant

• AFQMC projection does not alter̂S2 of spin-pure determinants:
(

e−τĤ
)n→∞

|φs〉 → |φ′
s〉

• Triplet and higher-spin states in〈UHF| drop out automatically!

〈UHF|e−τĤ |φs〉 = cs〈Ψs|e−τĤ |φs〉 (exact by symmetry)

• Energy mixed estimator〈UHF|Ĥe−τĤ |φs〉
〈UHF|e−τĤ |φs〉

is also free from spin contamination.

• Typical starting point:|φs〉 = |RHF〉.
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Test Case of Spin Projection Method: F2 Molecule*

• UHF predicts that F2 is unbound.

• Spin contamination: AFQMC/UHF yields large error aroundRF–F ∼ 2.
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* Work done in collaboration with Wissam Al-Saidi.
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F2 PEC with spin-projected QMC/UHF
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Spin-projected QMC/UHF yields accurate results over the entire range, from

equilibrium to dissociation.
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Application: F 2 Realistic PEC and Spectroscopic Constants
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• RCCSD(T) diverges at geometries

away from equilibrium

• DFT methods and UCCSD(T)

yield wells that are too narrow

−→ vibrational frequencies too

high

• LDA and GGA overestimates the

well depth

Units B3LYP RCCSD(T) sp-QMC/UHF Expt.

Equilibrium distance (re) Å 1.394 1.411 1.411(2) 1.4131(8)

Vibrational frequency (ωe) cm−1 1109 929 912(11) 917

Dissociation energy (De) eV 1.62 1.59a 1.70(1)a 1.693(5)

aEstimated using converged atom calculation.
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C2 PEC: AFQMC with CASSCF Trial WF

• C2 electronic states show strong

multireference character.

• RHF determinant has only∼ 70%

weight in the FCI ground state.

• Multireference CASSCF WF:

8 active electrons, 16 active orbitals.
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C2 PEC: AFQMC with CASSCF Trial WF

Nonparallelity error (NPE) of ground state

PECs,r = 0.9 − 3.0 Å.

Method NPE (mHa)

RHF 212

UHF 78

MP2 130

RCCSD(T) 98

UCCSD(T) 34

CISD 116

CISDT 51

CISDTQ 26

QMC/UHF 38

QMC/UHF2 20

QMC/CAS(8,16) 6
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How CASSCF WF Allows Excited State Calculation in AFQMC

Three lowest singlet states in C2 molecule:

• X 1Σ+
g : ground state

• B 1∆+
g : Lz = 2, different spatial symmetry

• B′ 1Σ+
g : same spatial symmetry as the ground state

Theoretically, unconstrained AFQMC projection will always lead to ground state:
(

e−τĤ
)n

|ΨT〉 → |Φ0〉

blah
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How CASSCF WF Allows Excited State Calculation in AFQMC

Three lowest singlet states in C2 molecule:

• X 1Σ+
g : ground state

• B 1∆+
g : Lz = 2, different spatial symmetry

• B′ 1Σ+
g : same spatial symmetry as the ground state

In the phaseless AFQMC,|Ψ
T
〉 guides and constrains the random walk:

• |Ψ
T
〉 “filters” out the unwanted spatial symmetry:

〈ΨΣ
T|e−βĤ |φ〉 = cΣ〈ΨΣ

T|e−βĤ |φΣ〉 (by symmetry)

• CAS trial WFs|ΨX
T 〉, |ΨB

T 〉, |ΨB′

T 〉 are orthogonal to each other. Each contains the right

mixture of determinants for a particular state.

• |Ψ
T
〉 together with the phaseless constraint prevents the “collapse” of the excited state.

• For theB′ state:〈ΨB′

T |X〉 ≈ 0.
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AFQMC PECs with Truncated CASSCF(8,16)ΨT
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With CASSCF(8,16) WF we can obtain both the ground and excited states of C2.

Note: theX andB′ states are of the same symmetry.
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Realistic Basis Set Results: AFQMC PECs with Truncated
CASSCF(8,16)
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Realistic Basis Set Results: Spectroscopic Constants

CASSCF(8,16) CCSD(T) QMC Expt.

Ground State

re 1.2479 1.2508 1.2462(9) 1.2425 Å

ωe 1862 1842 1884(17) 1855 cm−1

De 6.53 6.03 6.32(1) 6.33 eV

B Excited State

re 1.3966 1.391(1) 1.3855 Å

ωe 1395 1376(23) 1407 cm−1

Te 1.511 1.723(7) 1.498 eV

B′ Excited State

re 1.3814 1.393(1) 1.3774 Å

ωe 1489 1441(12) 1424 cm−1

Te 1.779 2.082(8) 1.910 eV
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PART 3—Prelude to MnO Calculation with AFQMC

• Calculation done in planewave basis with pseudopotentials.

• Must obtain good quality pseudopotentials that can yield the correct magnetism.

• Check code scaling for large number of CPUs.

Designing Correct Pseudopotentials

• Mn and O psps rarely used in magnetic calculations in literature (Gopal et al., PRB 2004;

Kolorenc & Mitas, PRB 2007).

• Benchmark psp calculations against existing results (LDA, GGA).

• Our initial tests seem to indicate sensitivity to the Mn psp quality.
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Determining Pseudopotential Quality

PSP LDA HF AF QMC CCSD(t)

IP (X → X+) expt = 10.49

OPIUM 10.57 9.97 10.74(6)

GL-ECP 10.41 9.94 10.61(3) 10.48

AE 10.53 9.91 10.50

IP (X → X++) expt = 30.26

OPIUM 30.42 29.41 30.79(6)

GL-ECP 29.97 29.11 30.28(6) 30.13

AE 30.37 29.08 30.23

De (X2 → 2X) expt = 5.08

OPIUM 5.96 1.74 5.18(15)

GL-ECP 5.29 0.98 3.88(8) 4.39

AE 6.18 1.65 4.98

• AF QMC shows a greater

sensitivity to the quality of

pseudopotential compared to

mean-field methods

• Hartree-Fock seems to give a

better indication of the

quality of pseudopotentials

for use in many-body

calculations

AE = all-electron. All energies are in eV.

NOTE: GL-ECP is not suitable for dissociation energy due to lack ofd-channel.
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AFQMC Scaling on to 1000+ CPUs (preliminary)
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• Each QMC walker steps forward independently of others.

• Each step is a very expensive operation, scaling asN2M log M .

• Communication among CPUs only happen at population control stage (every5 steps or so).

• Exchanging walker only done from slave to slave nodes. Walker size in MnO (2x2x2 supercell) is

relatively modest,O(1MB).

• We expect the code scales nicely well into thousands of CPUs.
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SUMMARY

• Accurate AFQMC PEC for strongly correlated systems such as C2 is obtained using

multireference trial WFs.

• Molecular excited states can be reliably computed by virtue of (near) orthogonality of

the multireference trial WFs.

• Spin-projected AFQMC allows us to employ an otherwise effective but

spin-contaminated trial WF.

• MnO crystal calculation: in preparation stage. Code scaling looks promising.


