Progress Report on Auxiliary-Field QMC for Strongly Correlated Systems

Wirawan Purwanto, Henry Krakauer, and Shiwei Zhang

College of William and Mary, Wiliamsburg, Virginia, USA

- **Part 1** Accurate C₂ potential energy curve (PEC) with truncated CASSCF trial WF: ground & excited states
 - C₂ ground state is magnetic and nontrivial due to low-lying excited states (Abrams & Sherrill, JCP 2004; Umrigar et al., PRL 2007)
 - Much interest in developing methods for accurate excited states.
 - Magnetic systems such as MnO requires accurate treatment of spin.
 - Removing spin contamination in trial WFs: F₂ molecule
 - Realistic basis results for C₂.

• **Part 2** MnO calculation with AFQMC: preliminaries

E-mail: wxpurw@wm.edu

Research supported by DOE CMSN, NSF, ARO, ONR. Computing performed at CPD, W&M SciClone, and NCCS.

PART 1—C₂ Molecule: Challenge for Accurate PECs

C₂ is a complicated molecule:

- strongly correlated
- ground state is antiferromagnetic
- low-lying excited states
- level crossings
- C₂ electronic states show strong multireference character (g.s. contains only ~ 70% RHF).

Source: Abrams & Sherrill, JCP 121, 9211 (2004)

Difficulty of Ground State Calculations

Source: Abrams & Sherrill, JCP 121, 9211 (2004)

- NPE is worse for excited states.
- Accurate PEC calculation requires method that works in strong correlation regime.

Auxiliary-Field Quantum Monte Carlo

Task: find the ground state of a many-body Hamiltonian in second-quantized form

 $\hat{H} = \hat{K} + \hat{V}$

Use iterative projection from a trial solution $|\Psi_{\rm T}\rangle$

$$e^{-\tau \hat{H}} e^{-\tau \hat{H}} \cdots e^{-\tau \hat{H}} |\Psi_{\rm T}\rangle = |\Phi_0\rangle;$$
$$e^{-\tau \hat{H}} \approx e^{-\tau \hat{K}} e^{-\tau \hat{V}} \qquad (\tau \to 0^+)$$

One-body term:

 $|\phi\rangle =$ Slater determinant

Two-body term \rightarrow sum of the square of one-body operators:

$$\hat{V} = \sum_{ijkl} V_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l = \frac{1}{2} \sum_{\alpha} \lambda_{\alpha} (\hat{v}_{\alpha})^2$$
$$e^{-\frac{1}{2}\tau\lambda\hat{v}^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\sigma \, e^{-\frac{1}{2}\sigma^2} e^{\sigma\sqrt{-\tau\lambda}\hat{v}}$$

 $e^{- au \hat{K}} |\phi
angle o |\phi'
angle$

Ground-state projection \rightarrow a high-dimensional integral \rightarrow random walk in $|\phi\rangle$:

$$\ket{\phi^{\prime}} = \int d\pmb{\sigma} \, P(\pmb{\sigma}) \, \pmb{e^{-\tau \hat{\pmb{h}}(\pmb{\sigma})}} \ket{\phi}$$

Phaseless AFQMC

- Reason: Complex-valued $e^{-\tau \hat{h}(\sigma)}$ leads to severe fluctuations in the phase of $|\phi\rangle$.
- Phaseless approximation: Constrain the random walk with the trial wave function: ¹
 - Importance sampling: $|\Phi_0\rangle = \sum_{\phi} w_{\phi} \frac{|\phi\rangle}{\langle \Psi_{\rm T} |\phi\rangle}.$
 - Weight w_{ϕ} be real all the time.
 - Restrict phase rotation in $\langle \Psi_{\rm T} | \phi \rangle$ to avoid circling around complex-phase origin:

$$\theta \equiv \arg\left(\frac{\langle \Psi_{\rm T} | \phi' \rangle}{\langle \Psi_{\rm T} | \phi \rangle}\right) \\ w_{\phi'} \propto w_{\phi} \max(\cos(\theta), 0)$$

- Method is not variational, but gives excellent approximation of the ground state.
- ¹ S. Zhang and H. Krakauer, PRL (2003)

Getting the Spin Right: Spin Contamination Problem

We typically deal with spin-independent electronic Hamiltonian:

 $[\hat{H},\hat{S}^2]=0$

Nondegenerate eigenstates must have definite spin states, i.e. they are also eigenstates of the total electronic spin \hat{S}^2 .

Wave functions that are not eigenstates of \hat{S}^2 are said to be *spin contaminated*.

Getting the Spin Right: Spin Contamination Problem

Some "singlet" WFs are not spin pure (most notably, UHF):

 $|\mathrm{UHF}\rangle = c_s |\Psi^s\rangle + c_t |\Psi^t\rangle + \dots$

Ideal AFQMC projection of $|UHF\rangle$ would lead to exact ground state:

$$\left(e^{-\tau\hat{H}}\right)^{n}|\mathrm{UHF}\rangle \to C|\Phi_{0}^{s}\rangle + O\left(e^{-n\tau(E_{0}^{t}-E_{0}^{s})}\right)|\Phi_{0}^{t}\rangle$$

Phaseless AFQMC modifies the projection; this can lead to spin-contaminated solution:

$$\left(e^{-\tau \hat{H}}\right)^{n \to \infty} |\text{UHF}\rangle \to C_s |\Phi_0^s\rangle + C_t |\Phi_0^t\rangle + \dots$$

especially if there are nearby triplets!

[F₂ triplet PEC: Cartwright and Hay, JCP (1979)]

Removing Spin Contamination in AFQMC

Idea: Start the projection with a singlet-spin-pure population $\{ |\phi_s \rangle \}$

- Each AFQMC walker is a Slater determinant
- AFQMC projection does not alter \hat{S}^2 of spin-pure determinants:

$$\left(e^{-\tau\hat{H}}\right)^{n\to\infty}\left|\phi_{s}\right\rangle \to \left|\phi_{s}'\right\rangle$$

• Triplet and higher-spin states in $\langle UHF |$ drop out automatically!

 $\langle \text{UHF}|e^{-\tau\hat{H}}|\phi_s\rangle = c_s \langle \Psi^s|e^{-\tau\hat{H}}|\phi_s\rangle$ (exact by symmetry)

- Energy mixed estimator $\frac{\langle \text{UHF} | \hat{H} e^{-\tau \hat{H}} | \phi_s \rangle}{\langle \text{UHF} | e^{-\tau \hat{H}} | \phi_s \rangle}$ is also free from spin contamination.
- Typical starting point: $|\phi_s\rangle = |\text{RHF}\rangle$.

Test Case of Spin Projection Method: F2 Molecule*

- UHF predicts that F_2 is unbound.
- Spin contamination: AFQMC/UHF yields large error around $R_{\rm F-F} \sim 2$.

RCCSDTQ: Musial & Bartlett, JCP (2005)

^{*}Work done in collaboration with Wissam Al-Saidi.

F₂ PEC with spin-projected QMC/UHF

Spin-projected QMC/UHF yields accurate results over the entire range, from equilibrium to dissociation.

Application: F2 Realistic PEC and Spectroscopic Constants

- RCCSD(T) diverges at geometries away from equilibrium
- DFT methods and UCCSD(T) yield wells that are too narrow
 → vibrational frequencies too high
- LDA and GGA overestimates the well depth

	Units	B3LYP	RCCSD(T)	sp-QMC/UHF	Expt.
Equilibrium distance (r_e)	Å	1.394	1.411	1.411(2)	1.4131(8)
Vibrational frequency (ω_e)	cm^{-1}	1109	929	912(11)	917
Dissociation energy (D_e)	eV	1.62	1.59 ^a	$1.70(1)^{a}$	1.693(5)

^aEstimated using converged atom calculation.

C₂ PEC: AFQMC with CASSCF Trial WF

- C₂ electronic states show strong multireference character.
- RHF determinant has only $\sim 70\%$ weight in the FCI ground state.
- Multireference CASSCF WF:
 8 active electrons, 16 active orbitals.

C₂ PEC: AFQMC with CASSCF Trial WF

Nonparallelity	error	(NPE)	of	ground	state
----------------	-------	-------	----	--------	-------

Truncated CASSCF Ψ_{T} : 40 – 270 determinants.

How CASSCF WF Allows Excited State Calculation in AFQMC

Three lowest singlet states in C_2 molecule:

- $X^{1}\Sigma_{g}^{+}$: ground state
- $B^{1}\Delta_{g}^{+}$: $L_{z} = 2$, different spatial symmetry
- $B'^{1}\Sigma_{g}^{+}$: same spatial symmetry as the ground state

Theoretically, unconstrained AFQMC projection will always lead to ground state:

$$\left(e^{-\tau \hat{H}}\right)^n |\Psi_{\rm T}\rangle \to |\Phi_0\rangle$$

How CASSCF WF Allows Excited State Calculation in AFQMC

Three lowest singlet states in C₂ molecule:

- $X^{1}\Sigma_{g}^{+}$: ground state
- $B^{1}\Delta_{g}^{+}$: $L_{z} = 2$, different spatial symmetry
- $B'^{1}\Sigma_{g}^{+}$: same spatial symmetry as the ground state

In the phaseless AFQMC, $|\Psi_{\rm T}\rangle$ guides and constrains the random walk:

• $|\Psi_{\rm T}\rangle$ "filters" out the unwanted spatial symmetry:

 $\langle \Psi^{\Sigma}_{\mathrm{T}} | e^{-\beta \hat{H}} | \phi \rangle = c_{\Sigma} \langle \Psi^{\Sigma}_{\mathrm{T}} | e^{-\beta \hat{H}} | \phi^{\Sigma} \rangle$ (by symmetry)

- CAS trial WFs $|\Psi_T^X\rangle$, $|\Psi_T^B\rangle$, $|\Psi_T^{B'}\rangle$ are orthogonal to each other. Each contains the right mixture of determinants for a particular state.
- $|\Psi_{\rm T}\rangle$ together with the phaseless constraint prevents the "collapse" of the excited state.
- For the B' state: $\langle \Psi_{\rm T}^{B'} | X \rangle \approx 0.$

AFQMC PECs with Truncated CASSCF(8,16) $\Psi_{\rm T}$

With CASSCF(8,16) WF we can obtain both the ground and excited states of C_2 . Note: the X and B' states are of the same symmetry.

Realistic Basis Set Results: AFQMC PECs with Truncated CASSCF(8,16)

Realistic Basis Set Results: Spectroscopic Constants

	CASSCF(8,16)	CCSD(T)	QMC	Expt.		
Gro	und State					
r_e	1.2479	1.2508	1.2462(9)	1.2425	Å	
ω_e	1862	1842	1884(17)	1855	cm^{-1}	
D_e	6.53	6.03	6.32(1)	6.33	eV	
$B \mathbf{E}$	xcited State					
r_e	1.3966		1.391(1)	1.3855	Å	
ω_e	1395		1376(23)	1407	cm^{-1}	
T_e	1.511		1.723(7)	1.498	eV	
B' Excited State						
r_e	1.3814		1.393(1)	1.3774	Å	
ω_e	1489		1441(12)	1424	cm^{-1}	
T_e	1.779		2.082(8)	1.910	eV	

PART 3—Prelude to MnO Calculation with AFQMC

- Calculation done in planewave basis with pseudopotentials.
- Must obtain good quality pseudopotentials that can yield the correct magnetism.
- Check code scaling for large number of CPUs.

Designing Correct Pseudopotentials

- Mn and O psps rarely used in magnetic calculations in literature (Gopal et al., PRB 2004; Kolorenc & Mitas, PRB 2007).
- Benchmark psp calculations against existing results (LDA, GGA).
- Our initial tests seem to indicate sensitivity to the Mn psp quality.

Determining Pseudopotential Quality

PSP	LDA	HF	AF QMC	CCSD(t)
$\operatorname{IP}(X \to $	X^+)			expt = 10.49
OPIUM	10.57	9.97	10.74(6)	
GL-ECP	10.41	9.94	10.61(3)	10.48
AE	10.53	9.91		10.50
$\operatorname{IP}(X \to $	$X^{++})$			expt = 30.26
OPIUM	30.42	29.41	30.79(6)	
GL-ECP	29.97	29.11	30.28(6)	30.13
AE	30.37	29.08		30.23
$D_e (X_2 \to 2X)$				expt = 5.08
OPIUM	5.96	1.74	5.18(15)	
GL-ECP	5.29	0.98	3.88(8)	4.39
AE	6.18	1.65		4.98

- AF QMC shows a greater sensitivity to the quality of pseudopotential compared to mean-field methods
- Hartree-Fock seems to give a better indication of the quality of pseudopotentials for use in many-body calculations

AE = all-electron. All energies are in eV.

NOTE: GL-ECP is not suitable for dissociation energy due to lack of *d*-channel.

AFQMC Scaling on to 1000+ CPUs

(preliminary)

- Each QMC walker steps forward independently of others.
- Each step is a very expensive operation, scaling as $N^2 M \log M$.
- Communication among CPUs only happen at population control stage (every 5 steps or so).
- Exchanging walker only done from slave to slave nodes. Walker size in MnO (2x2x2 supercell) is relatively modest, O(1MB).
- We expect the code scales nicely well into thousands of CPUs.

SUMMARY

- Accurate AFQMC PEC for strongly correlated systems such as C₂ is obtained using multireference trial WFs.
- Molecular excited states can be reliably computed by virtue of (near) orthogonality of the multireference trial WFs.
- Spin-projected AFQMC allows us to employ an otherwise effective but spin-contaminated trial WF.
- MnO crystal calculation: in preparation stage. Code scaling looks promising.